[Simulation research on the influence of regular porous lattice scaffolds on bone growth].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To assess the implantation effectiveness of porous scaffolds, it is essential to consider not only their mechanical properties but also their biological performance. Given the high cost, long duration and low reproducibility of biological experiments, simulation studies as a virtual alternative, have become a widely adopted and efficient evaluation method. In this study, based on the secondary development environment of finite element analysis software, the strain energy density growth criterion for bone tissue was introduced to simulate and analyze the cell proliferation-promoting effects of four different lattice porous scaffolds under cyclic compressive loading. The biological performance of these scaffolds was evaluated accordingly. The computational results indicated that in the early stages of bone growth, the differences in bone tissue formation among the scaffold groups were not significant. However, as bone growth progressed, the scaffold with a porosity of 70% and a pore size of 900 μm demonstrated markedly superior bone formation compared to other porosity groups and pore size groups. These results suggested that the scaffold with a porosity of 70% and a pore size of 900 μm was most conducive to bone tissue growth and could be regarded as the optimal structural parameter for bone repair scaffold. In conclusion, this study used a visualized simulation approach to pre-evaluate the osteogenic potential of porous scaffolds, aiming to provide reliable data support for the optimized design and clinical application of implantable scaffolds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409508PMC
http://dx.doi.org/10.7507/1001-5515.202410062DOI Listing

Publication Analysis

Top Keywords

porous scaffolds
12
bone tissue
12
pore size
12
bone
8
biological performance
8
bone growth
8
scaffold porosity
8
porosity 70%
8
70% pore
8
size 900
8

Similar Publications

Porous SiO/ZnO-carboxymethyl cellulose composite hydrogels for enhanced hemostatic efficacy and antibacterial activity.

Int J Biol Macromol

September 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China. Electronic address:

The development of effective hemostatic and antibacterial dressings remains a critical challenge in wound management. We report the design and fabrication of novel porous composite hydrogels composed of carboxymethyl cellulose (CMC), silica (SiO), and zinc oxide nanoparticles (ZnO NPs) . The incorporation of SiO and ZnO NPs into the CMC hydrogel matrix resulted in a unique multi-scale porous structure, characterized by interconnected holes of various sizes, which significantly enhanced the hydrogel's liquid absorption capacity and mechanical strength.

View Article and Find Full Text PDF

Particle stabilised high internal phase emulsion scaffolds with interconnected porosity facilitate cell migration.

Biomed Mater

September 2025

School of Chemical, Materials and Biological Engineering, The University of Sheffield, Pam Liversidge Building, Mappin Street, Sheffield, S1 3JD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

A key challenge in bone tissue engineering (BTE) is designing structurally supportive scaffolds, mimicking the native bone matrix, yet also highly porous to allow nutrient diffusion, cell infiltration, and proliferation. This study investigated the effect of scaffold interconnectivity on human bone marrow stromal cell (BMSC) behaviour. Highly interconnected, porous scaffolds (polyHIPEs) were fabricated using the emulsion templating method from 2-ethylhexyl acrylate/isobornyl acrylate (IBOA) and stabilised with ~200 nm IBOA particles.

View Article and Find Full Text PDF

Chronic wounds, particularly in diabetic patients, are characterized by prolonged inflammation, impaired angiogenesis, and delayed tissue regeneration. To address these challenges, the author developed a bioactive scaffold by incorporating quercetin nanoparticles (Qn) into a chitosan/silk fibroin (ChS) matrix, aiming to accelerate and enhance the wound healing process. Quercetin nanoparticles were synthesized via a solvent displacement method and incorporated into a ChS scaffold using a blending and freeze-drying technique.

View Article and Find Full Text PDF

Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.

View Article and Find Full Text PDF

In-situ extrusion 3D printing with tea polyphenol crosslinking for Hyaluronic acid sodium salt -based composite hydrogel scaffolds.

Colloids Surf B Biointerfaces

September 2025

School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China.

High-performance hydrogel biomaterials hold considerable promise for advanced wound care. However, the suboptimal mechanical properties of conventional hydrogel materials limit their practical application. In this study, Hyaluronic acid sodium salt (HA), xanthan gum (XG), and N-acryloyl-glycinamide (NAGA) hydrogels with porous structures were successfully fabricated using in-situ extrusion 3D printing technology, and a functionalization strategy involving tea polyphenol (TP) immersion was proposed to enhance material properties through additional hydrogen bonding.

View Article and Find Full Text PDF