98%
921
2 minutes
20
In this work we present a C-MATH-NN framework that extends a C-MATH framework that was developed in recent years to include prediction using artificial neural networks (NN) in a way that is engaging, interdisciplinary and collaborative to help equip our next generation of students with advanced technological and critical thinking skills motivated by social good. Specifically, the C-MATH framework has successfully helped students understand a real-world Context through a mathematical Model which is then Analyzed mathematically and Tested through appropriate numerical methods with data, and finally this undergraduate research becomes a Habit for students. Furthermore, the explanation of the main components of a simple NN-model serves as an introduction to this popular artificial intelligence tool. This framework has contributed to the success of talented students in mathematical biology research and their academic goals. We present a visual introduction to the architecture of artificial neural networks and its application to disease dynamics for all interested learners. We introduce a simple feed forward physics-informed neural network (PINN) built in MS-Excel that works very well for an epidemiological model and an equivalent Python implementation that is robust and scalable. The products introduced in this work are shared in an online repository with curriculum material for students and instructors that includes MS-Excel workbooks and Python files to facilitate the acquisition of technology tools to explore and use in their own projects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399703 | PMC |
http://dx.doi.org/10.1007/s11538-025-01511-4 | DOI Listing |
Neural Netw
September 2025
School of Electronic Science and Engineering, Nanjing University, China. Electronic address:
The Segment Anything Model (SAM) is a cornerstone of image segmentation, demonstrating exceptional performance across various applications, particularly in autonomous driving and medical imaging, where precise segmentation is crucial. However, SAM is vulnerable to adversarial attacks that can significantly impair its functionality through minor input perturbations. Traditional techniques, such as FGSM and PGD, are often ineffective in segmentation tasks due to their reliance on global perturbations that overlook spatial nuances.
View Article and Find Full Text PDFNeural Netw
September 2025
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China. Electronic address:
Automatic segmentation of retinal vessels from retinography images is crucial for timely clinical diagnosis. However, the high cost and specialized expertise required for annotating medical images often result in limited labeled datasets, which constrains the full potential of deep learning methods. Recent advances in self-supervised pretraining using unlabeled data have shown significant benefits for downstream tasks.
View Article and Find Full Text PDFNeural Netw
September 2025
School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.
3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Information Technology, Uppsala University, Uppsala, Sweden.
For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pathology, Hospital Tuanku Fauziah, Jalan Tun Abdul Razak, Kangar, Perlis, Malaysia.
Cervical cancer remains a significant cause of female mortality worldwide, primarily due to abnormal cell growth in the cervix. This study proposes an automated classification method to enhance detection accuracy and efficiency, addressing contrast and noise issues in traditional diagnostic approaches. The impact of image enhancement on classification performance is evaluated by comparing transfer learning-based Convolutional Neural Network (CNN) models trained on both original and enhanced images.
View Article and Find Full Text PDF