98%
921
2 minutes
20
Base editing (BE) can permanently correct over half of known human pathogenic genetic variants without requiring a repair template, thus serving as a promising therapeutic tool to treat a broad spectrum of genetic diseases. However, the broad activity windows of current base editors pose a major challenge to their therapeutic application. Here, we show that integrating a naturally occurring oligonucleotide binding module into the deaminase active center of TadA-8e, a highly active deoxyadenosine deaminase, enhances its editing specificity. When conjugated with a Cas9 nickase or alternative PAM Cas9 variants, the engineered TadA variant-TadA-NW1-consistently achieves robust A-to-G editing efficiencies within an editing window consisting of four nucleotides, substantially narrower than the 10-bp editing window of the TadA-8e-derived ABEs. Moreover, compared to ABE8e, ABE-NW1 shows significantly decreased Cas9-dependent and -independent off-target activity while maintaining similar on-target editing efficiency. Further, TadA-NW1 can be reprogrammed to perform desired cytidine deamination and adenine transversion within a restricted editing window. Finally, in a cystic fibrosis (CF) cell model, ABE-NW1 outperforms existing ABEs in accurately and efficiently correcting the CFTR W1282X variant, one of the most common CF-causing mutations. In all, we engineered a suite of base editors with refined activity windows, enabling more precise base editing. Importantly, this study presents a streamlined genome editor re-engineering strategy to accelerate the development of therapeutic base editing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398605 | PMC |
http://dx.doi.org/10.1038/s41467-025-63609-6 | DOI Listing |
Stem Cell Res
September 2025
Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:
Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.
View Article and Find Full Text PDFClin Appl Thromb Hemost
September 2025
Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2025
Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
genome editing with CRISPR-Cas9 systems is generating worldwide attention and enthusiasm for the possible treatment of genetic disorders. However, the consequences of potential immunogenicity of the bacterial Cas9 protein and the AAV capsid have been the subject of considerable debate. Here, we model the antigen presentation in cells after gene editing by transduction of a human cell line with an AAV2 vector that delivers the Cas9 transgene.
View Article and Find Full Text PDFClin Kidney J
September 2025
Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
Genome editing technologies, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, have transformed biomedical research by enabling precise genetic modifications. Due to its efficiency, cost-effectiveness and versatility, CRISPR has been widely applied across various stages of research, from fundamental biological investigations in preclinical models to potential therapeutic interventions. In nephrology, CRISPR represents a groundbreaking tool for elucidating the molecular mechanisms underlying kidney diseases and developing innovative therapeutic approaches.
View Article and Find Full Text PDFJ Appl Stat
February 2025
Department of Mathematics and State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, People's Republic of China.
We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures.
View Article and Find Full Text PDF