98%
921
2 minutes
20
The conversion of cellulose to levulinic acid (LA) catalyzed by solid acid is of great significance for high-value utilization of cellulosic biomass, while conventional solid acid catalysts exhibit unsatisfactory activity and stability. Herein, a strategy of supramolecular network-mediated spatial confinement-electronic bridge framework was proposed to construct a biomass carbon-coated AlZr (CA-AZ@BC) solid acid catalyst with Brønsted and Lewis dual-acid sites for high-efficiency conversion of cellulose. Based on a self-assembly sodium lignosulfonate-citric acid-bimetal supramolecular network, the specific spatial confinement effect of the supramolecular framework ensured the dispersibility and stability of active sites in the CA-AZ@BC catalyst. The formed Al/Zr-O-C electronic bridge facilitated the electron transfer between metal and support to optimize the electronic structure of acid sites. CA-AZ@BC exhibited high activity and stability, achieving 97.2 % of cellulose conversion and 70.1 % of LA yield as well as maintaining the excellent catalytic activity after five cycles. A series of tests confirm that outstanding structural characteristics, highly active acid sites, and favorable adsorption capability comprehensively improved the catalytic performance of CA-AZ@BC. In addition, theoretical calculations were performed to propose a rational system model for the conversion of cellulose to LA catalyzed by CA-AZ@BC and elucidate the mechanism of efficient catalysis. This study provides new ideas for designing highly active and stable carbon-based solid acid catalysts with tunable structure and acid sites for efficient production of biomass-derived platform compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2025.138810 | DOI Listing |
RSC Adv
September 2025
Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
Polyunsaturated fatty acids (PUFAs), fatty acids with multiple unsaturated carbon-carbon bonds, constitute a crucial class of lipids. While the vast diversity of PUFA species arises from their structural variations, most of them are poorly investigated due to their limited availability. Here, we utilize solid-phase synthesis of PUFAs, which we have recently developed, to construct a PUFA library.
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Department of Biological Sciences, School of Science Hampton University Hampton Virginia USA.
Lemon balm (), a perennial herb belonging to the Lamiaceae family, is widely recognized for its medicinal properties and therapeutic benefits. This review offers a detailed exploration of the botanical features, phytochemical composition, and pharmacological uses of , highlighting key bioactive compounds such as phenolic acids (including rosmarinic and caffeic acids), flavonoids, essential oils (such as citral and citronellal), and triterpenoids (ursolic and oleanolic acids). Advanced extraction techniques, such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), supercritical fluid extraction (SFE), and matrix solid-phase dispersion (MSPD), have greatly improved the efficiency of extraction, the preservation of bioactivity, and the sustainability of acquiring these bioactive compounds.
View Article and Find Full Text PDFChem Sci
September 2025
Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
Incorporating non-natural amino acids (NNAAs) into peptides enhances therapeutic properties, including binding affinity, metabolic stability, and half-life time. The pursuit of novel NNAAs for improved peptide designs faces the challenge of effective synthesis of these building blocks as well as the entire peptide itself. Solid-Phase Peptide Synthesis (SPPS) is an essential technology for the automated assembly of peptides with NNAAs, necessitating careful protection for effective coupling of amino acids in the peptide chain.
View Article and Find Full Text PDFVet World
July 2025
Research Center for Horticulture, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor No.32, Pakansari, Kec. Cibinong, Kabupaten Bogor, West Java 16915, Indonesia.
Background And Aim: Purple sweet potatoes ( var. Ayamurasaki) possess high nutritional potential due to their rich content of amino acids, minerals, and fatty acids. However, their nutritional profile can be further improved through fermentation.
View Article and Find Full Text PDFDalton Trans
September 2025
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of, Sciences, Chernogolovka, Moscow region 142432, Russia.
Neutral iron(III) and iron(II) complexes based on the pyruvic acid thiosemicarbazone (Hthpy) ligand [Fe(Hthpy)(thpy)] (1) and [Fe(Hthpy)] (2) were synthesized, and deeper insights into magneto-structural correlation were gained by FT-IR spectroscopy, single crystal X-ray crystallography, dc magnetic characterization, Fe Mössbauer spectroscopy, and DFT calculations. The X-ray structures of complex 1 were established for the HS ( = 5/2) state at 295 K and the LS ( = 1/2) state at 150 K. The crystal packing of 1 at these temperatures corresponds to the triclinic 1̄ symmetry and contains pairs of [Fe(Hthpy)(thpy)] complexes interconnected by a shortened S⋯S contact.
View Article and Find Full Text PDF