Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Current spectral adaptation of vision systems is volatile operation that relies on cascading optical filters and electronic components, resulting in bulky architectures and high energy consumption. Inspired by the spectrally tunable vision of a migratory fish, we propose a spectral-adaptive nonvolatile-operating device based on a two-dimensional MoS channel with CuInPS (CIPS) gate, in which the ferroelectric-photosensitive synergy of CIPS routes the carriers, emulating retina's adaptive feedback. The ferroelectric polarization dynamically tunes spectral synaptic plasticity and keeps the high spectral suppression ratio up to 10 without constant gate voltage or optical filters, which enhances target spectral feature extraction and elevates image recognition accuracy in cluttered scenes from 71.4 to 95.2%. Furthermore, the ferroelectric-photosensitive synergy of CIPS gate endows the Weber contrast (>10) on-demand switching in spectral dynamic scene, enabling autonomous driving seamless adaptation from glare to low-light environments. Nonvolatile reconfiguration of spectral adaptation presents a power-efficient non-von Neumann vision sensor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5c08939 | DOI Listing |