Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Rivers are dynamic ecosystems that play a crucial role in supporting microbial diversity and sustaining a wide range of ecological functions. Here, we used metagenomic sequencing datasets of channel sediments, riparian bulk soils, and riparian rhizosphere soils to construct metagenome-assembled genomes (MAGs) from 30 river wetlands along a latitudinal gradient in China. We identified 236 MAGs with completeness ≥ 50% and contamination ≤ 10%, including 225 bacteria and 11 archaea. Among these, 24.2% showed a completeness of 80% or higher. The dominant taxa were assigned to Pseudomonadota (78 MAGs), Actinomycetota (47 MAGs), and Bacteroidota (29 MAGs), which were particularly prevalent in riparian soils. These draft genomes provide valuable insights into microbial diversity and biogeochemical potential in river wetlands, enhancing our understanding of how microorganisms have evolved to adapt to the complex environments of rivers and latitudinal variation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397263 | PMC |
http://dx.doi.org/10.1038/s41597-025-05888-8 | DOI Listing |