98%
921
2 minutes
20
The development of deep neural networks is witnessing fast growth in network size, which requires novel hardware computing platforms. Optical computing has been a potential candidate for next-generation computing systems. Specifically, wavelength-division multiplexing (WDM) has been adopted in optical computing architecture to increase the computation bandwidth. Although existing WDM architectures have shown promise, they face challenges in the integration of light sources and further increase of the computing bandwidth. We introduce a mode-division multiplexing (MDM) strategy, offering what we believe to be a new degree of freedom in optical computing based on the micro-ring resonator platform. We propose an MDM approach and a multi-dimensional architecture that augments WDM with MDM to enhance channel capacity for computation. We design and experimentally demonstrate key components of the proposed architectures, including a multimode beam splitter, a thermo-optical tuner for the high-order mode, and a multimode waveguide bend. A proof-of-principle matrix multiplexing system, fabricated in a foundry and working for both MDM and MDM-WDM computing, is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.557297 | DOI Listing |
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFNat Genet
September 2025
Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
Despite advances in genomic diagnostics, the majority of individuals with rare diseases remain without a confirmed genetic diagnosis. The rapid emergence of advanced omics technologies, such as long-read genome sequencing, optical genome mapping and multiomic profiling, has improved diagnostic yield but also substantially increased analytical and interpretational complexity. Addressing this complexity requires systematic multidisciplinary collaboration, as recently demonstrated by targeted diagnostic workshops.
View Article and Find Full Text PDFLight Sci Appl
September 2025
State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.
As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Department of Physics, Tuskegee University, 1200 West Montgomery Road, 106 Chappie James, Tuskegee, Alabama, 36088-1920, UNITED STATES.
Spin qubit defects in two-dimensional materials have a number of advantages over those in three-dimensional hosts including simpler technologies for the defect creation and control, as well as qubit accessibility. In this work, we select the VBCB defect in the hexagonal boron nitride (hBN) as a possible optically controllable spin qubit and explain its triplet ground state and neutrality. In this defect a boron vacancy is combined with a carbon dopant substituting the closest boron atom to the vacancy.
View Article and Find Full Text PDFMaturitas
August 2025
Turku PET Centre, University of Turku and Åbo Akademi University, Finland; Turku University Hospital, Turku, Finland; Department of Psychology, University of Turku, Finland. Electronic address:
Objectives: Faces and bodies serve as important cues of physical attractiveness and reproductive fitness. Previous studies indicate that there are sex-related differences in the visual processing of erotic stimuli. We investigated gaze patterns and sex differences during sexual perception.
View Article and Find Full Text PDF