98%
921
2 minutes
20
Aim: To investigate the role of RNA methylation in retinal pigment epithelial (RPE) cells in age-related macular degeneration (AMD).
Methods: RNA methylation-related gene expression profiles of AMD patient and normal control retinal pigment epithelium were evaluated by single-cell transcriptome from 34 samples (11 from normal donors and 23 from AMD patients). The causal relationship between RNA methylation dysfunction and AMD was analyzed by summary-data-based Mendelian randomization (SMR) using AMD GWAS data and multi-omics quantitative trait loci (QTL), including expression QTLs (eQTLs), protein QTLs (pQTLs), splicing QTLs (sQTLs), and mA-QTLs (mQTLs). Additionally, machine learning models were applied to validate the causal association between RNA methylation dysfunction and AMD using Bulk RNA sequencing data from 31 normal donors and 37 AMD patients.
Results: The single-cell transcriptome data analysis revealed massive dysregulation of RNA methylation-related gene expression in the RPE of AMD patients. SMR revealed causal associations between key RNA methylation regulators (, , and , .) and AMD onset. Machine learning models further validated these findings and demonstrated a high accuracy of AMD risk prediction by using the above-identified RNA methylation-related genes: , , and . Furthermore, and were found to have a protective effect, while was associated with an increased risk of AMD.
Conclusion: The results reveal the implication of dysregulation of RNA methylation-related gene expression in the RPE of AMD patients and further demonstrated a causal association between RNA methylation-related genes (, , and ) and AMD. These findings highlight the importance of RNA methylation in the pathogenesis of AMD and offer potential biomarkers and therapeutic targets for AMD management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378684 | PMC |
http://dx.doi.org/10.18240/ijo.2025.09.03 | DOI Listing |
Appl Biochem Biotechnol
September 2025
Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.
Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.
View Article and Find Full Text PDFMol Cell Biochem
September 2025
Department of Laboratory Medicine, The People's Hospital of Zhongjiang, No. 96, Dabei Street, Kaijiang Town, Zhongjiang County, Deyang City, 618100, Sichuan Province, China.
5-methylcytosine (m5C) methylation is a post-transcriptional modification of RNAs, and its dysregulation plays pro-tumorigenic roles in lung adenocarcinoma (LUAD). Here, this study elucidated the mechanism of action of NSUN2, a major m5C methyltransferase, on LUAD progression. mRNA expression was analyzed by quantitative PCR.
View Article and Find Full Text PDFResearch (Wash D C)
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.
View Article and Find Full Text PDFFront Immunol
September 2025
Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Life Sciences, Anhui Medical University, Hefei, 230032, China; Translational Research Institute of Henan Provincial People's Hospital, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metaboli
Melanoma is the most aggressive and lethal form of skin cancer, posing significant challenges for prognosis assessment and treatment. Recently, metabolic reprogramming and epigenetic regulation have gained attention for their roles in cancer progression. The role of the key metabolic enzyme dihydrolipoic acid succinyltransferase (DLST) in cancer is currently unclear.
View Article and Find Full Text PDF