98%
921
2 minutes
20
Pig skin represents the best analogue for human skin both anatomically and physiologically, with this model used extensively for pre-clinical testing of therapeutics and biomaterials. However, the molecular processes underlying re-epithelialisation in pigs are still not well described compared to murine models. Our objective was to characterise the re-epithelialisation process in porcine full-thickness excisional wounds in Yorkshire pigs. Immunohistochemistry markers for keratinocyte differentiation, activation and oxidative stress were used at 7 days and 28 days post-wounding, and in healthy control skin to characterise protein expression. We show at day 7, re-epithelialisation is associated with reduced cytokeratin 10, E-cadherin and filaggrin and an increase in cytokeratin 14, cytokeratin 16 and cytokeratin 17. At day 28, cytokeratin 16 remained expressed, but cytokeratin 14 only associated with basal keratinocytes and cytokeratin 10 with suprabasal keratinocyte layers. At day 7, both phospho-nuclear factor kappa B and the antioxidant transcription factor nuclear factor-erythroid 2-related factor 2 show nuclear translocation at the wound edge, which is attenuated by day 28. Concomitant with these observations, we show that re-epithelialisation is associated with guanosine oxidation, protein nitration, and lipid peroxidation at both day 7 and 28. Our observations confirm the baseline expression profile of keratinocytes during normal healing of full-thickness excisional wounds in Yorkshire pigs. Characterisation of similar markers in human healing will improve our understanding of the validity of the Yorkshire pig model for use in the testing of therapeutics for impaired skin healing in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396615 | PMC |
http://dx.doi.org/10.1111/wrr.70082 | DOI Listing |
Turk J Biol
April 2025
Department of Biology, Faculty of Science, Gazi University, Ankara, Turkiye.
Background/aim: Delayed wound healing in diabetic patients is a significant complication that reduces quality of life, prompting the continuous investigation of new therapeutic agents. This study designed to explore the dose-dependent effects of different parts of L. (CM), a medicinal plant traditionally used for skin disorders, on diabetic skin wounds.
View Article and Find Full Text PDFWound Repair Regen
September 2025
Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio, USA.
This study tested the hypothesis that diabetic wound treatment with biomimetic pro-angiogenic, proteolytically and mechanically stable RADA16-II peptide nanofibers promotes regenerative wound healing via attenuation of inflammation and stimulation of neovascularization. Two full-thickness excisional dorsal skin wounds were created on 8-10 week old female db/db mice and treated with nanofiber hydrogel or saline (control). Animals were euthanized on days 7, 14, 28, and 56 and their wounds were analysed for morphology, vascularization, strength, and inflammation.
View Article and Find Full Text PDFSheng Wu Yi Xue Gong Cheng Xue Za Zhi
August 2025
School of Life Sciences, Liaoning University, Shenyang 110036, P. R. China.
N,N-Dimethylglycine (DMG) is a glycine derivative, and its sodium salt (DMG-Na) has been demonstrated to possess various biological activities, including immunomodulation, free radical scavenging, and antioxidation, collectively contributing to the stability of tissue and cellular functions. However, its direct effects and underlying mechanisms in wound healing remain unclear. In this study, a full-thickness excisional wound model was established on the dorsal skin of mice, and wounds were treated locally with DMG-Na.
View Article and Find Full Text PDFWound Repair Regen
August 2025
Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
Pig skin represents the best analogue for human skin both anatomically and physiologically, with this model used extensively for pre-clinical testing of therapeutics and biomaterials. However, the molecular processes underlying re-epithelialisation in pigs are still not well described compared to murine models. Our objective was to characterise the re-epithelialisation process in porcine full-thickness excisional wounds in Yorkshire pigs.
View Article and Find Full Text PDFBioengineering (Basel)
August 2025
United States Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam Houston, San Antonio, TX 78234, USA.
Split-thickness skin grafting (STSG) is the standard of care for skin replacement therapy. While STSG is a well-established technique, it has several limitations at both the donor and recipient sites. Full-thickness skin column (FTSC) grafting is an alternative approach that involves the orthogonal harvesting of small skin columns containing the epidermis, dermis, and associated skin appendages.
View Article and Find Full Text PDF