Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The 3D organization of the genome plays a critical role in regulating gene expression, maintaining cellular identity, and mediating responses to environmental cues. Advances in super-resolution microscopy and genomic technologies have enabled unprecedented insights into chromatin architecture at nanoscale resolution. However, the complexity and volume of data generated by these techniques necessitate innovative computational strategies for effective analysis and interpretation. In this review, we explore the transformative role of deep learning in the analysis of 3D genome organization, highlighting how deep learning models are being leveraged to enhance image reconstruction, segmentation, and dynamic tracking in chromatin research. We provide an overview of deep learning-enhanced methodologies that significantly improve spatial and temporal resolution of images, with a special focus on single-molecule localization microscopy. Furthermore, we discuss deep learning's contribution to segmentation accuracy, and its application in single-particle tracking for dissecting chromatin dynamics at the single-cell level. These advances are complemented by frameworks that enable multimodal integration and interpretability, pushing the boundaries of chromatin biology into clinical diagnostics and personalized medicine. Finally, we discuss emerging clinical applications where deep learning models, based on chromatin imaging, aid in disease stratification, drug response prediction, and early cancer detection. We also address the challenges of data sparsity, model interpretability and propose future directions to decode genome function with higher precision and impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397471PMC
http://dx.doi.org/10.1007/s00018-025-05837-zDOI Listing

Publication Analysis

Top Keywords

deep learning
16
super-resolution microscopy
8
clinical applications
8
learning models
8
deep
6
chromatin
6
learning chromatin
4
chromatin organization
4
organization super-resolution
4
microscopy clinical
4

Similar Publications

Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.

View Article and Find Full Text PDF

Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.

View Article and Find Full Text PDF

The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.

View Article and Find Full Text PDF

AI-enhanced predictive modeling for treatment duration and personalized treatment planning of cleft lip and palate therapy.

Int J Comput Assist Radiol Surg

September 2025

Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.

Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.

View Article and Find Full Text PDF

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF