98%
921
2 minutes
20
Hydrovoltaic harvesting converts water-solid interactions into electricity, offering a sustainable power route across diverse settings. Yet most systems are hard to scale, suffer evaporation-limited lifetimes, and lack multifunctionality, limiting real-world application. To overcome these limitations, a highly optimized multifunctional hydrovoltaic harvester is developed by integrating exfoliated graphene oxide sheet (EGs) and hydrophobic layered double hydroxide (LDH) coatings onto a porous melamine foam scaffold. The porous foam ensures rapid, capillary-driven water transport, the EGs coating forms continuous conductive pathways, lowering device resistance to 600 Ω and enabling efficient electron transfer, and the hydrophobic LDH layer suppresses evaporation, sustaining stable energy generation for up to 37 h in seawater. This 250 cm device delivers 0.016 Wh-more than tenfold higher than previously reported multifunctional systems-demonstrating exceptional scalability. The harvester directly powers a water electrolysis cell, achieving continuous hydrogen evolution without external power. It also exhibits a unique pressure-responsive thermal sensing capability: mechanical loading (10-50 kPa) modulates internal resistance, producing localized Joule heating (50-70 °C) for self-powered thermal actuation. Integrates long-duration hydrovoltaic power, self-powered electrolysis, and pressure-induced thermal sensing in one device. Delivers durable, scalable, multifunctional performance for practical off-grid energy and responsive sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202507492 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Center for Graphene Research and Innovation, University of Mississippi, University, Mississippi 38677, United States.
To assess the efficacy of a mixed-dimensional van der Waals (vdW) heterostructure in modulating the optoelectronic responses of nanodevices, the charge transport properties of the transition-metal dichalcogenide (TMD)-based heterostructure comprising zero-dimensional (0D) WS quantum dots (QDs) and two-dimensional (2D) MoS flakes are critically analyzed. Herein, a facile strategy was materialized in developing an atomically thin phototransistor assembled from mechanically exfoliated MoS and WS QDs synthesized using a one-pot hydrothermal route. The amalgamated photodetectors exhibited a high responsivity of ∼8000 A/W at an incident power of 0.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Well-defined heterostructures exhibit emergent properties distinct from their single-phase constituents, enabling advances across diverse technologies. Typically classified as self-assembly and epitaxy, heterointerface formation is generally assumed to proceed unidirectionally and irreversibly at bulk scales. Here we use in situ electron microscopy at 298 K to visualize the heterostructure formation from nanoscale mixtures of intrinsically immiscible salts at ambient conditions, NaCl and NaI.
View Article and Find Full Text PDFChem Res Toxicol
September 2025
Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece.
Graphene-based nanomaterials have transformed biomedical applications due to their exceptional physicochemical properties, and nitrogen (N)-doping further enhances the electrocatalytic activity of graphene. Driven by the demand for safer and more sustainable nanomaterials, in this work, we compared eco-friendly produced - doped graphene (bD) with conventionally synthesized - doped graphene (cD) in three different cell lines. Across all cell types and assays, cD was more toxic than bD.
View Article and Find Full Text PDFJ Environ Radioact
September 2025
Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China. Electronic address:
The discharge of nuclear wastewater into the sea may pose a significant environmental and health risk due to radionuclides such as Cs and Sr. Consequently, the efficient removal of these nuclides has emerged as a focal point in the field of radioactive wastewater treatment. Traditional restoration methods, which rely on physical and chemical interventions as well as bioremediation, are economically burdensome and unsuitable for large-scale restoration efforts.
View Article and Find Full Text PDFAnal Chim Acta
October 2025
Department of Chemistry, Tokyo Institute of Technology (Currently Institute of Science Tokyo), Meguro-ku, Tokyo, 152-8551, Japan; National Institute of Technology (KOSEN), Numazu College, 3600 Ooka, Numazu, Shizuoka, 410-8501, Japan. Electronic address:
Background: Graphene, with its unique electronic, thermal, and mechanical properties, plays an important role in electronic devices and batteries. Current applications strongly rely on liquid-phase processing, which requires stable graphene dispersions. However, stabilizing graphene dispersions in a liquid phase remains challenging because graphene easily aggregates due to strong inter-sheet forces.
View Article and Find Full Text PDF