Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quantum dots (QDs) are semiconductor nanocrystals with stable and bright fluorescence, attributes particularly valued for single-molecule imaging in the life sciences. For these applications, QDs must be compact and homogeneously dispersed as single colloids, attributes enabled by multidentate polymer coatings. However, high-resolution analyses show evidence of clusters of two or more QDs (multimers) that may dominate measurements at the single-particle level. Here, we study the mechanisms of multimer formation using chromatographic separation, microscopy, spectroscopy, and affinity measurements. We find that multimers derive from dynamic polymer cross-linking and exist in a reversible state that is concentration-dependent and influenced by free polymers. Compared with monomers, QD multimers exhibit heterogeneous brightness, protein-induced aggregation, and enhanced nonspecific binding to cells, effects that bias single-particle measurements in live cells. Multimers can be depleted by purification, blocking desorbed binding groups on polymers, or increasing the net electrostatic charge. These findings provide solutions for improving nanocrystal quality for life science applications and point toward reporting standardizations of nanoparticle concentration and sample purity during characterization and application.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5c12678DOI Listing

Publication Analysis

Top Keywords

dynamic polymer
8
polymer cross-linking
8
quantum dots
8
cross-linking limits
4
limits homogeneity
4
homogeneity compact
4
compact quantum
4
dots single-particle
4
single-particle tracking
4
tracking quantum
4

Similar Publications

Optoelectronic polymer memristors with dynamic control for power-efficient in-sensor edge computing.

Light Sci Appl

September 2025

State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.

As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.

View Article and Find Full Text PDF

Introduction: Benchtop and animal models have traditionally been used to study the propagation of Onyx Liquid Embolic Systems (Onyx) used in the treatment of brain arteriovenous malformations (AVM). However, such models are costly, do not provide sufficient detail to elucidate how variations in Onyx viscosity alter flow dynamics, and rely on some trial-and-error, resulting in elongated timelines for product development.

Objectives: The goal of this study was to leverage Computational Fluid Dynamics (CFD) simulations to predict the behavior of different Onyx formulations.

View Article and Find Full Text PDF

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

Semicrystalline Polymer Donors for Simultaneous Dark Current Suppression and Photocurrent Enhancement in High-Performance Photomultiplication-Type Organic Photodetectors.

ACS Appl Mater Interfaces

September 2025

Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

Photomultiplication-type organic photodetectors (PM-type OPDs) have recently attracted attention. However, the development of polymer donors specifically tailored for this architecture has rarely been reported. In this study, we synthesized benzobisoxazole-based polymer donors incorporating alkylated π-spacers that simultaneously enhance photocurrent density () and suppress dark current density (), leading to high responsivity () and specific detectivity (*).

View Article and Find Full Text PDF