Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Single-cell genomics is revolutionizing plant developmental biology, enabling the transcriptome profiling of individual cells and their lineage relationships. However, plant cell walls polymers hamper the dissociation and analysis of intact cells. This rigid structure can conceal cell types embedded in complex, lignified, multi-cell layered tissues such as those undergoing secondary growth. Their absence leads to incomplete single-cell genomic atlases and lineage inferences.

Results: We isolate nuclei to capture transcripts representing the diversity of cells throughout the stem of the woody perennial Populus trichocarpa generating a high-resolution transcriptome atlas of cell types and lineage trajectories. RNA sequencing of 11,673 nuclei identifies 26 clusters representing cell types in the cambium, xylem, phloem, and periderm. Comparative analysis with protoplast-derived transcriptome data reveals significant biases, with nuclei-based sequencing providing a higher representation of cells in lignified inner xylem tissues. Among previously underrepresented types, we uncover vessel-associated cells (VAC), a largely uncharacterized parenchyma subtype and the terminus of a xylem cell lineage. Gene regulatory analysis identifies a VAC-specific network and the Populus MYB48 as its primary regulator. Functional validation of MYB48 knockout mutants show an increase in vessel number and size, pointing to a role of VACs in vessel development.

Conclusions: Our study demonstrates the capture and transcriptome characterization of cell types embedded in plant secondary growth, identifying novel regulators of xylem development and stress adaptation. The discovery of MYB48 as a key regulator of VAC function highlights a previously uncharacterized mechanism influencing vessel development, with applications to improving wood formation and stress resilience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12392563PMC
http://dx.doi.org/10.1186/s13059-025-03728-xDOI Listing

Publication Analysis

Top Keywords

cell types
20
gene regulatory
8
types embedded
8
secondary growth
8
cell
7
types
6
cells
5
deep tissue
4
tissue profiling
4
profiling populus
4

Similar Publications

Self-Propelled Magnetic Micromotor-Functionalized DNA Tile System for Autonomous Capture of Circulating Tumor Cells in Clinical Diagnostics.

Adv Sci (Weinh)

September 2025

Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.

Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.

View Article and Find Full Text PDF

Challenges and limitations of molecular resolution fluorescence imaging.

Methods Appl Fluoresc

September 2025

Department of Biotechnology and Biophysics, University of Würzburg, Department of Biotechnology & Biophysics, Wuerzburg University, Am Hubland, Wuerzburg, other, 97074, GERMANY.

Super-resolution microscopy (SRM) has revolutionized fluorescence imaging enabling insights into the molecular organization of cells that were previously unconceivable. Latest developments now allow the visualization of individual molecules with nanometer precision and imaging with molecular resolution. However, translating these achievements to imaging under physiological conditions in cells remains challenging.

View Article and Find Full Text PDF

Macrophage cannibalism: efferocytosis in atherosclerosis.

Curr Opin Lipidol

August 2025

Cardiometabolic Immunity Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute (BDI) and Victorian Heart Institute (VHI), Monash University, Melbourne, Victoria, Australia.

Purpose Of Review: This review explores the evolving understanding of efferocytosis - the clearance of dead or dying cells by phagocytes - in the context of atherosclerosis. It highlights recent discovers in cell death modalities, impaired clearance mechanisms and emerging therapeutic strategies aimed at restoring efferocytosis to stabilize plaques and resolve inflammation.

Recent Findings: Recent studies have expanded the scope of efferocytosis beyond apoptotic cells to include other pro-inflammatory cell death modes, including pyroptosis, necroptosis and ferroptosis, revealing context-dependent clearance efficiency and immunological outcomes.

View Article and Find Full Text PDF

Achieving a crack-free, high-surface-area photoanode is essential for maximizing the efficiency of dye-sensitized solar cells (DSSCs). In this work, rutile titanium dioxide (rTiO) nanoflowers were synthesized hydrothermally and then conformally coated with copper(I) oxide (CuO) by RF magnetron sputtering to seal pre-existing cracks and to create a nanothorn surface favorable for dye adsorption. Systematic control of the sputtering time identified 60 min as optimal condition, yielding a photoanode thickness of about 6.

View Article and Find Full Text PDF

Adenosine A receptors (AARs) have shown promising therapeutic properties despite their controversial role in modulating stroke outcome. However, the temporal evolution of cerebral AARs density after cerebral ischemia and its subsequent neuroinflammatory response have been scarcely explored. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated in rats by positron emission tomography (PET) with [C]SCH442416 and immunohistochemistry (IHC).

View Article and Find Full Text PDF