98%
921
2 minutes
20
The global push toward sustainable energy, driven by soaring energy demands, escalating environmental concerns, and urgent climate challenges, has catalyzed remarkable advancements in energy conversion materials and devices [...].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388140 | PMC |
http://dx.doi.org/10.3390/mi16080943 | DOI Listing |
iScience
September 2025
Energy Conversion Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute, Changwon, Gyeongsangnam-do 51543, Republic of Korea.
Indoor photovoltaics (IPVs) are small and not optimized for versatile environments, making them environmentally sensitive. To expand the application of energy-harvesting photovoltaics, overcoming the current problems and mismatch loss is important. In this study, we found that IPVs are sensitive to changes in current density under low illuminance, and we introduced a protocol to reveal the modules resulting in the smallest standard deviation using current maps.
View Article and Find Full Text PDFACS Electrochem
September 2025
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.
View Article and Find Full Text PDFRSC Adv
September 2025
Otto-von-Guericke-University Magdeburg, Chemical Institute, Chair for Industrial Chemistry Universitätsplatz 2 39106 Magdeburg Germany
This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).
View Article and Find Full Text PDFRSC Adv
September 2025
School of Chemical Engineering, Minhaj University Lahore Lahore 54000 Punjab Pakistan.
Naomaohu lignite (NL) from Hami, Xinjiang, was ultrasonically extracted with a mixed solvent of CS and acetone (in equal volumes) to obtain the extract residue (ER). The ER was then separated based on density differences with CCl to yield the corresponding light residue (NL-L). The composition and structural characteristics of the light residue were characterized by proximate, ultimate, infrared, and thermogravimetric analyses (TG-DTG).
View Article and Find Full Text PDFNatl Sci Rev
September 2025
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
Contactless human-machine interfaces (C-HMIs) are revolutionizing artificial intelligence (AI)-driven domains, yet face application limitations due to narrow sensing ranges, environmental fragility, and structural rigidity. To address these obstacles, we developed a flexible photonic C-HMI (Flex-PCI) using flexible visible-blind near-infrared organic photodetectors. In addition to its unprecedented performance across key metrics, including broad detection range (0.
View Article and Find Full Text PDF