98%
921
2 minutes
20
Soil-transmitted helminths (STHs) present a significant global health challenge, particularly in tropical and subtropical regions. The current diagnostic standard involves the microscopic examination of a stool smear but it lacks sensitivity to detect infections of low intensity. Innovative solutions like lab-on-a-disk (LoD) technologies are emerging, showing promise in detecting low-intensity infections. Field tests conducted using our SIMPAQ (single-image parasite quantification) LoD device have demonstrated its potential as a diagnostic tool, especially for such low-intensity infections. Nevertheless, the device's efficiency has been limited by significant egg loss during sample preparation, low capture efficiency of eggs within the Field of View (FOV), and the presence of larger fecal debris that obstructs effective egg trapping and imaging. In this study, we conducted a set of laboratory experiments using model polystyrene particles and purified STH eggs to improve the sample preparation protocol. These experiments include the entire SIMPAQ procedure starting from sample preparation, infusing it into the LoD device, centrifugation, delivering the (model) eggs to the FOV, capturing an image, and analyzing it. We analyzed egg losses at each step of the procedure following the "standard" protocol, then elaborated and tested alternative, more efficient procedures. The resulting modified protocol significantly minimized particle and egg loss and reduced the amount of debris in the disk, thus enabling effective egg capture and clear images in the FOV, increasing the reliability of the diagnostic results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388490 | PMC |
http://dx.doi.org/10.3390/mi16080847 | DOI Listing |
Analyst
September 2025
Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350108, P. R. China.
: The objective of this study is to develop a straightforward and expeditious clinical detection method for meropenem. This study aims to introduce an innovative nanoenzyme design, thereby broadening the application of platinum nanomaterials in biological detection. It seeks to facilitate the portable detection of meropenem using commercial software.
View Article and Find Full Text PDFmSystems
September 2025
Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
A significant challenge in the field of microbiology is the functional annotation of novel genes from microbiomes. The increasing pace of sequencing technology development has made solving this challenge in a high-throughput manner even more important. Functional metagenomics offers a sequence-naive and cultivation-independent solution.
View Article and Find Full Text PDFSmall
September 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of AI-Driven Zero-Carbon Technologies, Key Laboratory of New Low-carbon Green Chemical Technology Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China.
Sarcosine (Sar), a critical potential biomarker for prostate cancer (PCa), is primarily detected via enzyme cascade reactions involving sarcosine oxidase (SOx) and peroxidase. Nevertheless, the intermediate product hydrogen peroxide (HO) tends to diffuse to the bulk solution phase without entering subsequent reaction, leading to suboptimal detection sensitivity and compromised analytical performance. To tackle this challenge, a multilayered sandwich nanozyme cascade sensor (designated as Cu-MOF/Rf@BDC) is proposed through a confinement-mediated HO enrichment strategy.
View Article and Find Full Text PDFMicrosc Res Tech
September 2025
Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany.
This review is intended as a guideline for beginners in confocal laser scanning microscopy. It combines basic theoretical concepts, such as fluorescence principles, resolution limits, and imaging parameters with practical guidance on sample preparation, staining strategies, and data acquisition using confocal microscopy. The aim is to combine technical and methodological aspects in order to provide a comprehensive and accessible introduction.
View Article and Find Full Text PDF