98%
921
2 minutes
20
Leaves of L., traditionally used for treating heart disorders, represent a sustainable and underutilized source of bitter secoiridoids and xanthones, also found in -an official herbal drug derived from the same, protected species. As root harvesting leads to the destruction of the plant, using the more readily available leaves could help reduce the pressure on this endangered natural resource. This study aimed to optimize the ultrasound-assisted extraction of the secoiridoid swertiamarin and the xanthone isogentisin from leaves using response surface methodology (RSM). Subsequently, the stability of the bioactive compounds (swertiamarin, gentiopicrin, mangiferin, isoorientin, isovitexin, and isogentisin) in the optimized extract was monitored over a 30-day period under different storage conditions. The influence of extraction time (5-65 min), ethanol concentration (10-90% /), liquid-to-solid ratio (10-50 mL/g), and temperature (20-80 °C) was analyzed at five levels according to a central composite design. The calculated optimal extraction conditions for the simultaneous maximization of swertiamarin and isogentisin yields were 50 min extraction time, 30% ethanol concentration, 30 mL/g liquid-to-solid ratio, and 62.7 °C extraction temperature. Under these conditions, the experimentally obtained yields were 3.75 mg/g dry weight for swertiamarin and 1.57 mg/g dry weight for isogentisin, closely matching the RSM model predictions. The stability study revealed that low-temperature storage preserved major bioactive compounds, whereas mangiferin stability was compromised by elevated temperature and light exposure. The established models support the production of standardized leaf extracts and may facilitate the efficient separation and purification of their bioactive compounds, thereby contributing to the further valorization of this valuable plant material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389421 | PMC |
http://dx.doi.org/10.3390/plants14162538 | DOI Listing |
J Sep Sci
September 2025
Programa De Pós-Graduação em Química, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil.
Secondary metabolites are important bioactive compounds for diet and medicine. This study optimizes the extraction of hydroethanolic herbal extracts using an EDGE (Energized Dispersive Guided Extraction) system, evaluates their antioxidant capacity, and analyzes correlations among antioxidant activity, total phenolic content, and individual compounds. A Doehlert matrix design was used to optimize extraction, having temperature and time as independent variables, and total phenolic content (mg GAE/g) as the response, quantified via the Folin-Ciocalteu method.
View Article and Find Full Text PDFBiomed Chromatogr
October 2025
Department of Rehabilitation, Nan'ao People's Hospital, Shenzhen, China.
Chrysotobibenzyl, a bioactive ingredient from Dendrobium chrysotoxum, exhibits potent anti-tumor activity. However, its metabolic profiles remain unelucidated. This study aimed to disclose the metabolic fates of chrysotobibenzyl using human liver fractions.
View Article and Find Full Text PDFEthnopharmacological Relevance: Heart failure (HF), the terminal stage of various cardiovascular diseases, represents a significant threat to global health. Fuxin Decoction (FXD), a classical Traditional Chinese Medicine (TCM) formula, has demonstrated therapeutic efficacy in HF treatment. However, its bioactive components and precise mechanisms remain to be elucidated.
View Article and Find Full Text PDFPhytochemistry
September 2025
Plant Protection Institute, HUN-REN Centre for Agricultural Research, Fehérvári út 132-144, 1116 Budapest, Hungary. Electronic address:
The demand for previously undescribed antimicrobial agents is increasing due to the emergence of resistant plant pathogens. One of the untapped sources of new biopesticides is the plant kingdom. A bioassay-guided process comprising TLC-Bacillus subtilis bioassay, TLC-MS, and preparative flash column chromatography enabled the isolation of five previously undescribed antimicrobial labdane diterpenes (graminifolins A-E, 1-5) from the flower extract of grass-leaved goldenrod (Euthamia graminifolia, formerly Solidago graminifolia).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Tea (Camellia sinensis) polysaccharides (TPS) and tea polysaccharide conjugates (TPC) are bioactive compounds found in tea leaves and flowers, attracting growing interest for their biological activities and emerging applications in food, pharmaceuticals, and cosmetics. Despite substantial progress in tea polyphenol research, studies focusing on TPS and TPC are still relatively underrepresented. This review fills a gap in the literature by summarizing the latest advancements in the extraction, characterization, and biological effects of TPS and TPC.
View Article and Find Full Text PDF