98%
921
2 minutes
20
Foreign Object Debris (FOD) on airport pavements poses a serious threat to aviation safety, making accurate detection and interpretable scene understanding crucial for operational risk management. This paper presents an integrated multi-modal framework that combines an enhanced YOLOv7-X detector, a cascaded YOLO-SAM segmentation module, and a structured prompt engineering mechanism to generate detailed semantic descriptions of detected FOD. Detection performance is improved through the integration of Coordinate Attention, Spatial-Depth Conversion (SPD-Conv), and a Gaussian Similarity IoU (GSIoU) loss, leading to a 3.9% gain in mAP@0.5 for small objects with only a 1.7% increase in inference latency. The YOLO-SAM cascade leverages high-quality masks to guide structured prompt generation, which incorporates spatial encoding, material attributes, and operational risk cues, resulting in a substantial improvement in description accuracy from 76.0% to 91.3%. Extensive experiments on a dataset of 12,000 real airport images demonstrate competitive detection and segmentation performance compared to recent CNN- and transformer-based baselines while achieving robust semantic generalization in challenging scenarios, such as complete darkness, low-light, high-glare nighttime conditions, and rainy weather. A runtime breakdown shows that the enhanced YOLOv7-X requires 40.2 ms per image, SAM segmentation takes 142.5 ms, structured prompt construction adds 23.5 ms, and BLIP-2 description generation requires 178.6 ms, resulting in an end-to-end latency of 384.8 ms per image. Although this does not meet strict real-time video requirements, it is suitable for semi-real-time or edge-assisted asynchronous deployment, where detection robustness and semantic interpretability are prioritized over ultra-low latency. The proposed framework offers a practical, deployable solution for airport FOD monitoring, combining high-precision detection with context-aware description generation to support intelligent runway inspection and maintenance decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389761 | PMC |
http://dx.doi.org/10.3390/s25165116 | DOI Listing |
ACS Chem Neurosci
September 2025
Department of Medical Biology, Faculty of Medicine, Bahçeşehir University, Istanbul 34353, Turkey.
IL-17A is a pro-inflammatory cytokine that significantly contributes to the pathogenesis of autoimmune diseases, including multiple sclerosis (MS). Previous studies have suggested that PARP-1 inhibitors can modulate IL-17A-mediated inflammation, prompting the investigation of Niraparib, an FDA-approved PARP-1 inhibitor, as a potential therapeutic agent for MS. In this study, we hypothesized that Niraparib could disrupt the interaction between IL-17A and its receptor, IL-17RA.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.
View Article and Find Full Text PDFNat Prod Rep
September 2025
Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK.
Covering upto 2025Rotenoids are angular hybrid isoflavonoids mainly characterized by an additional six-membered ring between the B and C rings of flavonoids. The extra ring introduces further chemical diversity to the densely substituted precursors, isoflavonoids, making rotenoids a significant group of compounds within the plant kingdom. Early biosynthesis studies by L.
View Article and Find Full Text PDFmBio
September 2025
Department of Biology, Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Flanders, Belgium.
Echinocandins, which target the fungal β-1,3-glucan synthase (Fks), are essential for treating invasive fungal infections, yet resistance is increasingly reported. While resistance typically arises through mutations in Fks hotspots, emerging evidence suggests a contributing role of changes in membrane sterol composition due to mutations. Here, we present a clinical case of () in which combined mutations in and , but not alone, appear to confer echinocandin resistance.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti, 85, Bologna 40129, Italy.
Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.
View Article and Find Full Text PDF