A Review on Recent Advances in Signal Processing in Interferometry.

Sensors (Basel)

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optical interferometry provides high-precision displacement and angle measurement solutions for a wide range of cutting-edge industrial applications. One of the key factors to achieve such precision lies in highly accurate optical encoder signal processing, as well as the calibration and compensation techniques customized for specific measurement principles. Optical interferometric techniques, including laser interferometry and grating interferometry, are usually classified into homodyne and heterodyne systems according to their working principles. In homodyne interferometry, the displacement is determined by analyzing the phase variation of amplitude-modulated signals, and common demodulation methods include error calibration methods and ellipse parameter estimation methods. Heterodyne interferometry obtains displacement information through the phase variation of beat-frequency signals generated by the interference of two light beams with shifted frequencies, and its demodulation techniques include pulse-counting methods, quadrature phase-locked methods, and Kalman filtering. This paper comprehensively reviews the widely used signal processing techniques in optical interferometric measurements over the past two decades and conducts a comparative analysis based on the characteristics of different methods to highlight their respective advantages and limitations. Finally, the hardware platforms commonly used for optical interference signal processing are introduced.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390615PMC
http://dx.doi.org/10.3390/s25165013DOI Listing

Publication Analysis

Top Keywords

signal processing
16
optical interferometric
8
phase variation
8
interferometry
6
methods
6
optical
5
review advances
4
signal
4
advances signal
4
processing
4

Similar Publications

Nanoparticle labels enable colorimetric point-of-care devices for rapid, low-cost diagnosis and health monitoring. Accurate interpretation of colorimetric assays relies on reliable perception of differences in quantitative color attributes such as hue, chromaticity, and saturation. This study examined interactions between physical factors such as nanoparticle shape, illumination, and sample environment, and biological factors affecting color vision deficit and optical signal processing that influenced perceived color difference.

View Article and Find Full Text PDF

Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.

View Article and Find Full Text PDF

Optoelectronic polymer memristors with dynamic control for power-efficient in-sensor edge computing.

Light Sci Appl

September 2025

State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.

As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.

View Article and Find Full Text PDF

Spiking neural networks (SNNs) inherently rely on the timing of signals for representing and processing information. Augmenting SNNs with trainable transmission delays, alongside synaptic weights, has recently shown to increase their accuracy and parameter efficiency. However, existing training methods to optimize such networks rely on discrete time, approximate gradients, and full access to internal variables such as membrane potentials.

View Article and Find Full Text PDF

[Cough frequency monitoring: current technologies and clinical research applications].

Zhonghua Jie He He Hu Xi Za Zhi

September 2025

Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory He

Cough is a common symptom of many respiratory diseases, and parameters such as frequency, intensity, type and duration play important roles in disease screening, diagnosis and prognosis. Among these, cough frequency is the most widely applied metric. In current clinical practice, cough severity is primarily assessed based on patients' subjective symptom descriptions in combination with semi-structured questionnaires.

View Article and Find Full Text PDF