98%
921
2 minutes
20
Low-temperature plasma cleaning technology has been widely used to clean various optical components precisely. After the complete removal of organic contaminants from fused silica surfaces through plasma cleaning, continuous plasma irradiation can lead to nano-defects on the fused silica surface, resulting in the degradation of optical performance. Thus, the microscale processes underlying plasma-induced surface damage on fused silica were investigated through molecular dynamics simulations, aiming to analyze the mechanisms of surface damage on optical components during plasma cleaning. Oxygen plasma bombardment disrupted fused silica bonds, leading to the successive sputtering of silicon-oxygen atoms. The quantity of sputtered silicon atoms demonstrated a linear correlation with irradiation time. The emergence of pit defects and distinctive interface damage patterns elucidated the impact of neutral oxygen atoms. Critical findings underscore the onset of significant damage beyond 33 eV, underlining plasma's role in thinning fused silica. Temperature is a crucial factor affecting surface damage during plasma cleaning. Ultimately, investigating the surface damage mechanism of fused silica during plasma cleaning establishes a groundwork for achieving non-destructive optics cleaning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388477 | PMC |
http://dx.doi.org/10.3390/molecules30163418 | DOI Listing |
Molecules
August 2025
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China.
Low-temperature plasma cleaning technology has been widely used to clean various optical components precisely. After the complete removal of organic contaminants from fused silica surfaces through plasma cleaning, continuous plasma irradiation can lead to nano-defects on the fused silica surface, resulting in the degradation of optical performance. Thus, the microscale processes underlying plasma-induced surface damage on fused silica were investigated through molecular dynamics simulations, aiming to analyze the mechanisms of surface damage on optical components during plasma cleaning.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Institute of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C Street, 15-351 Bialystok, Poland.
Polylactide (PLA) that is reinforced with diatomaceous earth (DE) is a promising and eco-friendly material with high engineering potential. This article provides a comprehensive overview of various PLA types and processing methods for PLA + DE composites. This study aimed to determine the mechanical strength limits of PLA + DE composites using two PLA grades-amorphous PLE 005-A and semi-crystalline Ingeo 4043D-that are each filled with Perma-Guard DE 5, 10, and 15% by weight, and two manufacturing methods, injection molding (IM) and additive manufacturing (3DP), using fused filament fabrication (FFF).
View Article and Find Full Text PDFNanomaterials (Basel)
August 2025
Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany.
We present a comprehensive study on the femtosecond laser direct welding of glass and metal, focusing on optimizing processing parameters and understanding the influence of material properties and beam shaping on welding quality. Using microscopy, we identified optimal pulse energy, focal position, and line-spacing for achieving high-quality welds. We further investigated the effects of laser beam shaping and material property differences in various glass-to-metal pairs, including borosilicate, fused silica, and Zerodur glasses welded with mirror-polished metals such as Cu, Mo, Al, Ti, and AISI316 steel.
View Article and Find Full Text PDFJ Am Chem Soc
August 2025
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60202, United States.
Counting the number density of ions and water molecules at aqueous:solid interfaces remains a fundamental challenge, especially under conditions of high ionic strength. Here, we employ an all-optical noncontact approach based on phase- and amplitude-resolved second harmonic generation spectroscopy to estimate the cation and anion coverages and the number density of net-aligned water molecules at fused silica surfaces in contact with aqueous solutions held at pH 5.8 and a wide range of ionic strengths of NaCl, NaClO, NaSO, and NaHPO up to 8 M.
View Article and Find Full Text PDF