Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study focused on investigating the flammability and thermal degradation behavior of wood fiber-reinforced composites consisting of xanthan gum (XG) and gelatin (GEL). These materials could potentially be used as novel bio-based and biodegradable topsoil covers (TSCs) to support reforestation practices. To improve the thermal properties of these composites, xanthan gum was cross-linked with citric acid (CA) or tannic acid (TA) and eventually coated with casein, while gelatin was cross-linked with tannic acid. Thermogravimetric analysis (TGA) showed that thermal degradation of all the prepared samples started at temperatures of 200 °C for xanthan-based samples and 300 °C for gelatin-based samples, which is well above the typical operating conditions for TSCs in their intended application. Single-flame-source tests demonstrated that the CA cross-linked xanthan-based TSCs coated with casein and all the gelatin-based TSCs had excellent self-extinguishing properties. Additionally, Limiting Oxygen Index (LOI) tests showed that gelatin-based composites had LOI values between 30 and 40 vol% O, increasing with a higher gelatin-to-wood fiber ratio. These results demonstrated the potential of cross-linked biopolymers (e.g., xanthan and gelatin) as green flame retardants for the production of wood fiber-filled TSCs for use in forestry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388283PMC
http://dx.doi.org/10.3390/molecules30163324DOI Listing

Publication Analysis

Top Keywords

thermal degradation
12
degradation behavior
8
gelatin-based composites
8
topsoil covers
8
xanthan gum
8
tannic acid
8
coated casein
8
tscs
5
investigation flame
4
thermal
4

Similar Publications

Advanced glycation end products (AGEs) and reactive intermediates, such as methylglyoxal, are formed during thermal processing of foods and have been implicated in the pathogenesis of a series of chronic inflammatory diseases. AGEs are thought to directly interact with the intestinal epithelium upon ingestion of thermally processed foods, but their effects on intestinal epithelial cells are poorly understood. This study investigated transcriptomic changes in human intestinal epithelial FHs 74 Int cells after exposure to AGE-modified human serum proteins (AGE-HS), S100A12, a known RAGE ligand, and unmodified human serum proteins (HS).

View Article and Find Full Text PDF

Background: Erythema, an early visual indicator of tissue damage preceding pressure injuries (PrIs), presents as redness in light skin tones but is harder to detect in dark skin tones. While thermography shows promise for early PrI detection, validation across different skin tones remains limited. Furthermore, most protocols and models have been developed under highly controlled conditions.

View Article and Find Full Text PDF

Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.

View Article and Find Full Text PDF

HO and CO Sorption in Ion-Exchange Sorbents: Distinct Interactions in Amine Versus Quaternary Ammonium Materials.

ACS Appl Mater Interfaces

September 2025

The Steve Sanghi College of Engineering, Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona 86011, United States.

This study investigates the HO and CO sorption behavior of two chemically distinct polystyrene-divinylbenzene-based ion exchange sorbents: a primary amine and a permanently charged strong base quaternary ammonium (QA) group with (bi)carbonate counter anions. We compare their distinct interactions with HO and CO through simultaneous thermal gravimetric, calorimetric, gas analysis, and molecular modeling approaches to evaluate their performance for dilute CO separations like direct air capture. Thermal and hybrid (heat + low-temperature hydration) desorption experiments demonstrate that the QA-based sorbent binds both water and CO more strongly than the amine counterparts but undergoes degradation at moderate temperatures, limiting its compatibility with thermal swing regeneration.

View Article and Find Full Text PDF

Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).

View Article and Find Full Text PDF