Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Gram-negative bacteria are known for causing diseases in humans, animals, and plants, and high intrinsic resistance to antibiotics. Phage therapy is a promising alternative to control multidrug-resistant bacterial pathogens. Here, we present an overview of phage characteristics, host specificity, genomic classification, and therapeutic potentials across medical, veterinary, and agricultural systems. We evaluate the efficacy and limitations of current phage candidates, the biological and environmental barriers of phage applications, and the phage cocktail strategy. We highlight the innovations on the development of targeted phage delivery systems and the transition from the exploration of clinical phage therapy to plant disease management, advocating integrated disease control strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388082 | PMC |
http://dx.doi.org/10.3390/microorganisms13081873 | DOI Listing |