Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gastrointestinal (GI) disorders present significant healthcare challenges, requiring rapid, accurate, and effective diagnostic methods to improve treatment outcomes and prevent complications. Wireless capsule endoscopy (WCE) is an effective tool for diagnosing GI abnormalities; however, precisely identifying diverse lesions with similar visual patterns remains difficult. Many existing computer-aided diagnostic (CAD) systems rely on manually crafted features or single deep learning (DL) models, which often fail to capture the complex and varied characteristics of GI diseases. In this study, we proposed "EndoNet," a multi-stage hybrid DL framework for eight-class GI disease classification using WCE images. Features were extracted from two different layers of three pre-trained convolutional neural networks (CNNs) (Inception, Xception, ResNet101), with both inter-layer and inter-model feature fusion performed. Dimensionality reduction was achieved using Non-Negative Matrix Factorization (NNMF), followed by selection of the most informative features via the Minimum Redundancy Maximum Relevance (mRMR) method. Two datasets were used to evaluate the performance of EndoNer, including Kvasir v2 and HyperKvasir. Classification using seven different Machine Learning algorithms achieved a maximum accuracy of 97.8% and 98.4% for Kvasir v2 and HyperKvasir datasets, respectively. By integrating transfer learning with feature engineering, dimensionality reduction, and feature selection, EndoNet provides high accuracy, flexibility, and interpretability. This framework offers a powerful and generalizable artificial intelligence solution suitable for clinical decision support systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385998PMC
http://dx.doi.org/10.3390/diagnostics15162009DOI Listing

Publication Analysis

Top Keywords

deep learning
8
disease classification
8
dimensionality reduction
8
kvasir hyperkvasir
8
endonet multiscale
4
multiscale deep
4
learning
4
learning framework
4
framework multiple
4
multiple gastrointestinal
4

Similar Publications

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Clinical evaluation of motion robust reconstruction using deep learning in lung CT.

Phys Eng Sci Med

September 2025

Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan.

In lung CT imaging, motion artifacts caused by cardiac motion and respiration are common. Recently, CLEAR Motion, a deep learning-based reconstruction method that applies motion correction technology, has been developed. This study aims to quantitatively evaluate the clinical usefulness of CLEAR Motion.

View Article and Find Full Text PDF

Predicting complex time series with deep echo state networks.

Chaos

September 2025

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.

View Article and Find Full Text PDF

Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).

View Article and Find Full Text PDF