98%
921
2 minutes
20
Benign prostatic hyperplasia (BPH) is a multifactorial condition that is highly prevalent and affects aging males. It frequently results in lower urinary tract symptoms (LUTS) and a reduced quality of life. While hormonal dysregulation and chronic inflammation have long been implicated in BPH pathogenesis, recent evidence highlights the role of physical activity in modulating prostate health. In this narrative review, evidence from quantitative studies examining the effect of exercise on BPH risk and symptom severity was first synthesized. Collectively, these studies suggest that regular physical activity is associated with a lower incidence and reduced progression of BPH. The potential mechanisms through which exercise may exert protective effects on the prostate were then explored. These include modulation of sympathetic nervous system activity, alterations in hormonal profiles (e.g., testosterone and insulin), suppression of chronic inflammation and oxidative stress, and the promotion of autophagy within prostatic tissue. Central to these mechanisms is the role of myokines-signaling molecules secreted by skeletal muscle during exercise. Key myokines, such as irisin, interleukin-6 (IL-6), brain-derived neurotrophic factor (BDNF), and myostatin, are reviewed in the context of prostate health. These molecules regulate inflammatory pathways, metabolic processes, and tissue remodeling. For instance, exercise-induced reductions in myostatin are linked to improved insulin sensitivity and decreased fat accumulation, while elevated irisin and BDNF levels may exert anti-inflammatory and metabolic benefits relevant to BPH pathophysiology. Although direct causal evidence linking myokines to BPH is still emerging, their biological plausibility and observed systemic effects suggest a promising avenue for non-pharmacological intervention. Future research should focus on identifying the specific myokines involved, elucidating their molecular mechanisms within the prostate, and evaluating their therapeutic potential in clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387815 | PMC |
http://dx.doi.org/10.3390/medicina61081362 | DOI Listing |
World J Urol
September 2025
Sindh Medical College, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan.
Front Genet
August 2025
Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.
Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.
CRSLS
September 2025
Faculty of Medicine, Department of Internal Medicine, Division of Intensive Care Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye. (Dr. Demirer Aydemir).
We present a rare morphological variant of a colonic polyp observed during a routine screening colonoscopy. A 62-year-old male with known chronic obstructive pulmonary disease (COPD) and benign prostatic hyperplasia (BPH) was found to have a bridge-shaped polyp in the sigmoid colon. The polyp was successfully resected via snare polypectomy following submucosal adrenaline injection.
View Article and Find Full Text PDFJ Pathol Transl Med
September 2025
Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Background: Prostate cancer is one of the most common malignancies in males worldwide. Serum prostate-specific antigen is a frequently employed biomarker in the diagnosis and risk stratification of prostate cancer; however, it is known for its low predictive accuracy for disease progression. New prognostic biomarkers are needed to distinguish aggressive prostate cancer from low-risk disease.
View Article and Find Full Text PDFHistol Histopathol
September 2025
Institute of Pathology, University Hospital Bonn, Bonn, Germany.
Aims: We aimed to analyze CD63, a cell surface protein that has been associated with tumor aggressiveness in several cancers, including breast, colorectal, and lung cancer, as well as melanoma, in prostate cancer.
Methods: CD63 expression was analyzed immunohistochemically in a cohort of primary prostate cancers from 281 patients. The results were correlated with clinico-pathologic parameters, including biochemical recurrence.