A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Numerical Simulation Study on Non-Axisymmetric Die-Less Spinning with a Right-Angle Groove in the Tube. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To address the challenges of non-axisymmetric tube spinning, this study employs finite element simulations to validate a novel spinning method for right-angle groove tubes. Three forming schemes with distinct roller path geometries were designed and analyzed using Simufact Forming, with 6063-O aluminum alloy tubes serving as the research material. The simulation results indicate that multi-pass forming (Schemes I and II) significantly enhances wall thickness uniformity compared to single-pass forming (Scheme III). Scheme I exhibits optimal performance due to the minimized equivalent stress in the final forming pass. The maximum stress is concentrated at the groove bottom, leading to wall thinning and springback, while the maximum strain occurs at the roller exit point, where metal accumulation causes local wall thickening. Experimental observations confirm the consistency with the simulation results, validating the model's reliability. This study deepens the understanding of deformation mechanisms in complex groove forming, highlighting the roller path geometry in controlling stress-strain distribution and final product quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387327PMC
http://dx.doi.org/10.3390/ma18163858DOI Listing

Publication Analysis

Top Keywords

right-angle groove
8
forming schemes
8
roller path
8
forming
6
numerical simulation
4
simulation study
4
study non-axisymmetric
4
non-axisymmetric die-less
4
die-less spinning
4
spinning right-angle
4

Similar Publications