Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
To address the challenges of non-axisymmetric tube spinning, this study employs finite element simulations to validate a novel spinning method for right-angle groove tubes. Three forming schemes with distinct roller path geometries were designed and analyzed using Simufact Forming, with 6063-O aluminum alloy tubes serving as the research material. The simulation results indicate that multi-pass forming (Schemes I and II) significantly enhances wall thickness uniformity compared to single-pass forming (Scheme III). Scheme I exhibits optimal performance due to the minimized equivalent stress in the final forming pass. The maximum stress is concentrated at the groove bottom, leading to wall thinning and springback, while the maximum strain occurs at the roller exit point, where metal accumulation causes local wall thickening. Experimental observations confirm the consistency with the simulation results, validating the model's reliability. This study deepens the understanding of deformation mechanisms in complex groove forming, highlighting the roller path geometry in controlling stress-strain distribution and final product quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387327 | PMC |
http://dx.doi.org/10.3390/ma18163858 | DOI Listing |