Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-uniform corrosion cracking in reinforced concrete buildings constitutes a fundamental difficulty resulting in durability failure. This work develops a microscopic-scale multi-species electrochemical phase field model to tackle this issue. The model comprehensively examines the spatiotemporal coupling mechanisms of the full "corrosion-rust swelling-cracking" process by integrating electrochemical reaction kinetics, multi-ion transport processes, and a unified phase field fracture theory. The model uses local corrosion current density as the primary variable to accurately measure the dynamic interactions among electrochemical processes, ion transport, and rust product precipitation. It incorporates phase field method simulations of fracture initiation and propagation in concrete, establishing a bidirectional link between rust swelling stress and crack development. Experimental validation confirms that the model's predictions about cracking duration, crack shape, and ion concentration distribution align well with empirical data, substantiating the efficacy of local corrosion current density as an indicator of electrochemical reaction rate. Parametric studies were performed to examine the effects of interface transition zone strength, oxygen diffusion coefficient, protective layer thickness, reinforcing bar diameter, and reinforcing bar configuration on cracking patterns. This model's multi-physics field coupling framework, influenced by dynamic corrosion current density, facilitates cross-field interactions, offering sophisticated theoretical tools and technical support for the quantitative analysis, durability evaluation, and protective design of corrosion-induced cracking in reinforced concrete structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387260PMC
http://dx.doi.org/10.3390/ma18163742DOI Listing

Publication Analysis

Top Keywords

phase field
16
cracking reinforced
12
reinforced concrete
12
corrosion current
12
current density
12
corrosion cracking
8
multi-species electrochemical
8
electrochemical phase
8
electrochemical reaction
8
local corrosion
8

Similar Publications

Widefield acoustics heuristic: advancing microphone array design for accurate spatial tracking of echolocating bats.

BMC Ecol Evol

September 2025

Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.

Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.

View Article and Find Full Text PDF

China's aluminum-products industry, a large-scale consumer of industrial paints, is a potentially significant source of full-volatility organic compounds (F-VOCs). However, the emission characteristics of F-VOCs, including VOCs, intermediate-, semi-, and low-volatility organic compounds (I/S/LVOCs), and their role in ozone formation potentials (OFP), and secondary organic aerosol formation potentials (SOAP) remain unclear. In this study, we collected in-field samples from three industrial paints (solvent-based, water-based and powder paints) at spraying and drying processes, and treatment devices to analyze the emission characteristics of F-VOCs, OFP, SOAP.

View Article and Find Full Text PDF

The Influence of Single-Stranded or Double-Stranded DNA Tags on Ligand Binding Affinity in DNA-Encoded Libraries.

Anal Chem

September 2025

Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.

DNA-encoded libraries have become widely used in drug discovery, and several different setups to link chemical compounds to DNA have been employed in the field, including single-stranded and double-stranded DNA tags as well as a variety of linker chemistries. In our previous study, we observed distinct differences in binding affinities between ligands coupled either to single-stranded or double-stranded DNA; however, the molecular basis for these differences remained unclear. Here, we present a native ion mobility mass spectrometry approach that incorporates gas- and solution-phase activation techniques to systematically investigate these differences, specifically the impact of DNA tags on binding performance in protein-ligand interactions.

View Article and Find Full Text PDF

In ultrasound imaging, propagation of an acoustic wavefront through heterogeneous media causes phase aberrations that degrade the coherence of the reflected wavefront, leading to reduced image resolution and contrast. Adaptive imaging techniques attempt to correct this phase aberration and restore coherence, leading to improved focusing of the image. We propose an autofocusing paradigm for aberration correction in ultrasound imaging by fitting an acoustic velocity field to pressure measurements, via optimization of the common midpoint phase error (CMPE), using a straight-ray wave propagation model for beamforming in diffusely scattering media.

View Article and Find Full Text PDF

Biomolecular dynamics in the microsecond-to-millisecond (µs-ms) timescale are linked to various biological functions, such as enzyme catalysis, allosteric regulation, and ligand recognition. In solution state NMR, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are commonly used to probe µs-ms timescale motions, providing detailed kinetic, thermodynamic, and mechanistic information at the atomic level. For investigating conformational dynamics in high-molecular-weight biomolecules, methyl groups serve as ideal probes due to their favorable relaxation properties, and C CPMG relaxation dispersion is widely employed for characterizing dynamics in selectively CH-labeled samples.

View Article and Find Full Text PDF