98%
921
2 minutes
20
Honokiol (HON) and magnolol (MAG), structural isomers from , exhibit notable anticancer activity, particularly against head and neck squamous cell carcinoma (HNSCC). However, due to their high lipophilicity, their intravenous administration is challenging. This study aimed to develop HON- and MAG-loaded intravenous (IV) nanoemulsions using commercial lipid preparations with varying fatty acid compositions. The formulations were physicochemically characterized and evaluated in vitro using FaDu and SCC-040 HNSCC cell lines. HON and MAG were sterilized via ionizing radiation at doses of 25, 100, and 400 kGy. Their suitability for IV use was assessed through PXRD, DSC, TGA, EPR, FT-IR, NMR, and HPLC analyses. All formulations met safety criteria for IV administration, with mean droplet diameters below 241 nm and encapsulation efficiencies exceeding 95%. They significantly reduced cancer cell viability, with a synergistic effect observed in combined HON and MAG formulations compared to single-compound nanoemulsions. Clinoleic-based formulations showed enhanced anticancer efficacy, likely due to the pro-apoptotic properties of oleic acid. Notably, radiation sterilization at the standard 25 kGy dose preserved the thermal, crystalline, and structural stability of HON and MAG, whereas higher doses (400 kGy) induced degradation. Although free radicals were detected via EPR, their transient nature and rapid decay confirmed the method's safety. HON/MAG-loaded nanoemulsions exhibited strong anticancer potential, while radiation sterilization at 25 kGy ensured sterility without compromising stability. These findings provide a preliminary in vitro basis for future in vivo studies investigating HON and MAG as potential adjuvant therapies for HNSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386581 | PMC |
http://dx.doi.org/10.3390/ijms26168032 | DOI Listing |
Int J Mol Sci
August 2025
Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
Honokiol (HON) and magnolol (MAG), structural isomers from , exhibit notable anticancer activity, particularly against head and neck squamous cell carcinoma (HNSCC). However, due to their high lipophilicity, their intravenous administration is challenging. This study aimed to develop HON- and MAG-loaded intravenous (IV) nanoemulsions using commercial lipid preparations with varying fatty acid compositions.
View Article and Find Full Text PDFArch Toxicol
June 2025
College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China.
Organophosphate pesticides (OPs) are widely used in agricultural fields and can inhibit the activity of human acetylcholinesterase (hAChE) by covalently binding to serine at the enzyme's active site. However, the molecular recognition mechanisms beyond their covalent binding remain unclear. This study employed molecular docking along with molecular dynamics simulations (MD) to investigate four representative OPs, Phosphamidon, Monocrotophos, Dichlorvos, and Trichlorfon, as well as two potential alternatives Magnolol (MAG) and Honokiol (HON), to understand the conformational change of hAChE and its molecular recognition mechanism.
View Article and Find Full Text PDFCurr Issues Mol Biol
September 2024
Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 60-806 Poznań, Poland.
The efficacy of treatment of head and neck squamous cell carcinoma (HNSCC) patients is still unsatisfactory, and there is an ongoing search for novel therapies. Locoregionally advanced HNSCC cases, which frequently require combined surgery and chemoradiotherapy, are especially difficult to treat. Natural compounds, like -derived lignans-honokiol (HON) and magnolol (MAG)-can reduce cancer cell growth but retain a good safety profile and thus may show benefit as adjuvant therapeutics.
View Article and Find Full Text PDFJ Ethnopharmacol
May 2022
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China. Electronic address:
Ethnopharmacological Relevance: Magnolia officinalis Cortex (M. officinalis) is a classical traditional Chinese medicine (TCM) widely used to treat digestive system diseases. It effectively regulates gastrointestinal motility to improve abdominal pain, abdominal distension and other symptoms.
View Article and Find Full Text PDFAnal Bioanal Chem
March 2021
School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
A novel surface plasmon resonance-based P-gp ligand screening system (SPR-PLSS) combined with lentiviral particle (LVP) stabilization strategy was constructed to screen out potential P-gp inhibitors from natural products. Firstly, we constructed LVPs with high and low expression levels of P-gp. The LVPs can ensure the natural conformation of P-gp based on the principle that LVPs germinated from packaging cells will contain cell membrane fragments and P-gp they carry.
View Article and Find Full Text PDF