98%
921
2 minutes
20
Tungsten disulfide (WS), a two-dimensional layered material with favorable electronic properties, has been explored as a promising negative electrode material for calcium-ion batteries (CIBs). Despite its use in monovalent systems, its performance in divalent Ca intercalation remains poorly understood. Herein, a combined theoretical and experimental framework is used to elucidate the electronic mechanisms underlying Ca intercalation. Theoretical insights were obtained through density functional theory calculations, incorporating periodic simulations using the Vienna Ab initio Simulation Package, and localized orbital-level analysis using the discrete variational Xα method. These approaches reveal that Ca insertion induces significant interlayer expansion, lowers diffusion barriers, and narrows the bandgap compared to Li. Orbital analysis revealed strengthened W-S bonding and diminished antibonding interactions, which may contribute to the improved structural resilience. Electrochemical tests validated these predictions; the CaWS electrode delivered an initial discharge capacity of 208 mAh·g at 0.1C, with 61% retention after 50 cycles at 1C. The voltage profile exhibits a distinct plateau near 0.7 V, consistent with a two-phase-like intercalation mechanism, contrasting with the gradual slope observed for Li. These findings suggest that Ca intercalation facilitates both rapid ion transport and enhanced structural robustness. This study offers mechanistic insights into multivalent-ion storage and supports the design of high-performance CIB electrodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386366 | PMC |
http://dx.doi.org/10.3390/ijms26168005 | DOI Listing |
Anim Sci J
September 2025
Faculty of Agriculture, Iwate University, Morioka, Japan.
Hardness of meat is one of the most important textural properties noted while eating. Bromelain, found in pineapples, is an enzyme that degrades collagen, a factor that affects meat hardness. The latter is generally evaluated based on shear strength and texture; however, such methods are destructive.
View Article and Find Full Text PDFACS Electrochem
September 2025
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.
View Article and Find Full Text PDFEar Hear
September 2025
Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Objectives: In patients with cochlear implants, tools for measuring intracochlear electric environment as well as neural responses to electrical stimulation are widely available. This study aimed to investigate the possible correlation of changes in the responsiveness of the auditory nerve measured by neural response telemetry with changes in the peak and spread of the intracochlear electric field measured by transimpedance matrix (TIM) in patients implanted with straight electrode arrays.
Design: In this retrospective study, we analyzed a cohort of 144 ears of 113 consecutive patients who were implanted with Slim Straight electrode array (Cochlear Ltd.
Small
September 2025
Institute of Chemistry, Academia Sinica, Taipei, 115201, Taiwan.
Achieving high capacitance while maintaining rapid charge transport and structural stability remains a major challenge in the design of battery-type supercapacitor electrodes. Herein, a molecularly engineered strategy is presented for constructing hierarchical hybrid electrodes by integrating petal-like NiCu-LDH nanosheets onto 3D HBC-x (x = H, F, OMe)-functionalized CNT paper via a one-step hydrothermal process. The incorporation of HBC effectively mitigates CNT agglomeration and constructs an interconnected conductive framework that enhances charge transport, shortens ion diffusion paths, and reduces internal resistance.
View Article and Find Full Text PDFElectronic textiles are a transformative technology set to revolutionize next-generation wearable devices. However, a major challenge is making efficient yarn-based energy systems that power flexible wearables while blending seamlessly into textiles for unobstructed applications. Herein, 2D materials-coated yarn supercapacitors (YSCs) are designed, offering a promising solution through capacitance-matched electrode fabrication and a novel customizable riveted interconnection strategy for textile integration.
View Article and Find Full Text PDF