98%
921
2 minutes
20
This study investigated the correlation of oxidative stress biomarkers with the activity of idiopathic nephrotic syndrome (INS) in Slovenian children. In this prospective study, sequential plasma and urine samples from 20 children with INS in different phases of disease activity were taken: at first disease presentation or relapse (before glucocorticoid (GC) treatment), at time of remission achievement, and after discontinuation of GC treatment. This study measured oxidative stress biomarkers, such as 8-hydroxy-2'-deoxyguanosine (8-OHdG), hexanoyl-lysine (HEL) adduct, dityrosine (DiY), and 15-isoprostane F2t, using competitive enzyme-linked immunosorbent assay (ELISA) and assessed oxidative status using the FRAS 5 analytical system, which enables rapid photometric measurement of both oxidative and antioxidant capacity from biological fluids. Two complementary tests were performed: the d-ROMs test (derivatives of reactive oxygen metabolites) and the PAT (plasma antioxidant test). The oxidative stress index (OSI) was calculated as the ratio between them. Concentrations of isoprostanes in urine were statistically significantly lower in patients at first disease presentation or relapse compared to time of remission achievement. Values of PAT test in serum were significantly highest after GC treatment. Values of d-ROMs test in serum were significantly lower at time of remission achievement compared to first disease presentation or relapse. Values of 8-OHdG, HEL, DiY (in plasma and urine), isoprostanes, and OSI in plasma did not statistically significantly differ in various phases of disease activity. Isoprostanes in urine and PAT in serum could serve as potential biomarkers of oxidative stress and disease activity in children with INS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383386 | PMC |
http://dx.doi.org/10.3390/biomedicines13081984 | DOI Listing |
Neurochem Res
September 2025
Biology and Health Laboratory, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Behbahan Faculty of Medical Sciences, Behbahan, Iran.
Metab Brain Dis
September 2025
Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Brain ischemia is a major global cause of disability, frequently leading to psychoneurological issues. This study investigates the effects of 4-aminopyridine (4-AP) on anxiety, cognitive impairment, and potential underlying mechanisms in a mouse model of medial prefrontal cortex (mPFC) ischemia. Mice with mPFC ischemia were treated with normal saline (NS) or different doses of 4-AP (250, 500, and 1000 µg/kg) for 14 consecutive days.
View Article and Find Full Text PDFCell Biochem Biophys
September 2025
Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang, Malaysia.
Mol Cell Biochem
September 2025
Peking University Third Hospital, Beijing, China.
Cardiovascular-Kidney-Metabolic (CKM) syndrome, a newly defined systemic disorder, is characterized by the pathological interplay among diabetes, chronic kidney disease (CKD), and cardiovascular disease (CVD). Recent studies have identified chronic inflammation not only as a central mediator in the pathological progression of CKM syndrome but also as a pivotal molecular hub that drives coordinated damage across multiple organ systems. Mechanistic investigations have revealed that aberrant activation of signaling pathways such as NF-κB, Wnt, PI3K-AKT, JAK-STAT, and PPAR constitutes a complex inflammatory regulatory network.
View Article and Find Full Text PDF