Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The study objectives were to investigate the role of ferroptosis, the mechanism linking iron accumulation, oxidative stress, and dopaminergic dysfunction, in restless legs syndrome (RLS), and to explore its connection with circadian regulation, a key feature of RLS and a known modulator of ferroptosis. We conducted pathway and gene expression analyses in 17 RLS patients and 39 controls, focusing on pathways related to ferroptosis, oxidative stress, iron metabolism, dopaminergic signaling, circadian rhythms, and immune responses. Enrichment analysis, differential gene expression, and cross-pathway gene overlaps were assessed. Ferroptosis and efferocytosis pathways were significantly upregulated in RLS, while oxidative phosphorylation, phosphatidylinositol signaling, PI3K-Akt, FoxO, and adipocytokine pathways were downregulated. The circadian rhythm pathway was markedly suppressed, with 12 circadian genes downregulated, suggesting that circadian disruption may drive ferroptosis activation. Decreased expression of protective pathways, including antioxidant responses and autophagy, was associated with increased iron accumulation, oxidative stress, and inflammation. Dopaminergic synapse genes were upregulated, possibly as a compensatory response to neuronal damage. Several genes overlapped across ferroptosis, circadian, and dopaminergic pathways, indicating a shared pathogenic mechanism. Our findings support a model in which circadian disruption promotes ferroptosis in RLS, contributing to iron overload, oxidative damage, and dopaminergic dysfunction. This pathogenic cascade may also enhance immune activation and inflammation. Circadian regulation and ferroptosis emerge as promising therapeutic targets in RLS. Further studies in larger cohorts are warranted to validate these mechanistic insights.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384461PMC
http://dx.doi.org/10.3390/biom15081184DOI Listing

Publication Analysis

Top Keywords

circadian regulation
12
oxidative stress
12
ferroptosis
9
circadian
9
role ferroptosis
8
restless legs
8
legs syndrome
8
iron accumulation
8
accumulation oxidative
8
dopaminergic dysfunction
8

Similar Publications

Lung cancer remains one of the most fatal cancers, with cigarette smoke (CS) exposure being a major risk factor due to its role in triggering oxidative stress. Disruption of circadian rhythms, increasingly common in modern lifestyles, has also been linked to cancer progression. Targeting both oxidative imbalance and circadian disruption may offer a more effective therapeutic approach.

View Article and Find Full Text PDF

Background Delirium and sleep disturbances are common in critically ill patients and are associated with adverse outcomes, including prolonged intensive care unit (ICU) stays. Ramelteon, a melatonin receptor agonist, may improve sleep and reduce delirium by regulating circadian rhythms. This study evaluated the efficacy of ramelteon in shortening ICU stay, decreasing delirium incidence and duration, and improving sleep quality in critically ill patients.

View Article and Find Full Text PDF

The effects of circadian rhythm on reproductive functions.

Zygote

September 2025

International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.

Circadian rhythms are intrinsic, endogenously generated cycles that regulate various physiological processes, including reproductive functions. These rhythms are orchestrated by a network of core clock genes and are influenced by external environmental cues, primarily the light-dark cycle. Disruptions in circadian rhythms can have profound effects on fertility in both males and females, impacting processes such as the estrous cycle, ovulation, sperm production, implantation and pregnancy maintenance.

View Article and Find Full Text PDF

This study investigates the interaction between circadian rhythms and lipid metabolism disruptions in the context of obesity. Obesity is known to interfere with daily rhythmicity, a crucial process for maintaining brain homeostasis. To better understand this relationship, we analyzed transcriptional data from mice fed with normal or high-fat diet, focusing on the mechanisms linking genes involved with those regulating circadian rhythms.

View Article and Find Full Text PDF

The advantage of periodic over constant signalling in microRNA-mediated regulation.

Nucleic Acids Res

September 2025

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Cells may exploit oscillatory gene expression to encode biological information. Temporal features of oscillations, such as pulse frequency and amplitude, are determinant for the outcome of signalling pathways. However, little effort has been devoted to unveiling the role of pulsatility in the context of post-transcriptional gene regulation, where microRNAs act by binding to RNAs and regulate their expression.

View Article and Find Full Text PDF