Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Automated segmentation of skeletal muscle from computed tomography (CT) images is essential for large-scale quantitative body composition analysis. However, manual segmentation is time-consuming and impractical for routine or high-throughput use. This study presents a systematic comparison of two-dimensional (2D) and three-dimensional (3D) deep learning architectures for segmenting skeletal muscle at the anatomically standardized level of the third lumbar vertebra (L3) in low-dose computed tomography (LDCT) scans. We implemented and evaluated the DeepLabv3+ (2D) and UNet3+ (3D) architectures on a curated dataset of 537 LDCT scans, applying preprocessing protocols, L3 slice selection, and region of interest extraction. The model performance was evaluated using a comprehensive set of evaluation metrics, including Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD95). DeepLabv3+ achieved the highest segmentation accuracy (DSC = 0.982 ± 0.010, HD95 = 1.04 ± 0.46 mm), while UNet3+ showed competitive performance (DSC = 0.967 ± 0.013, HD95 = 1.27 ± 0.58 mm) with 26 times fewer parameters (1.27 million vs. 33.6 million) and lower inference time. Both models exceeded or matched results reported in the recent CT-based muscle segmentation literature. This work offers practical insights into architecture selection for automated LDCT-based muscle segmentation workflows, with a focus on the L3 vertebral level, which remains the gold standard in muscle quantification protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10278-025-01646-9DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
muscle segmentation
12
computed tomography
8
ldct scans
8
muscle
6
segmentation
6
deep learning-based
4
learning-based approaches
4
approaches skeletal
4
segmentation low-dose
4

Similar Publications

Sudden Death Caused by Bilateral Diaphragmatic Eventration in Myotonic Dystrophy Type 1.

Am J Forensic Med Pathol

September 2025

Department of Pathology, St Louis University School of Medicine, Office of the Medical Examiner - City of St. Louis, St. Louis, MO.

Myotonic dystrophy type 1, or dystrophia myotonica type 1 (DM1), is a multisystem disorder inherited in an autosomal dominant manner. It is caused by a CTG tri-nucleotide expansion in the 3'-untranslated region (3'-UTR) of the dystrophia myotonia protein kinase (DMPK) gene. Core clinical features include progressive skeletal muscle weakness, myotonia, and systemic complications, with premature mortality most often due to respiratory or cardiac dysfunction.

View Article and Find Full Text PDF

Myopathology and Immune Profile of Granulomatous Myositis in Sarcoid Myopathy.

Neuropathol Appl Neurobiol

October 2025

Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.

Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Background: Fine particulate matter has developmental toxicity, and midgestation is an important period for the development of foetal skeletal muscle. The ability of exercise to modulate skeletal muscle damage in mice exposed to PM during gestation remains unclear.

Methods: Pregnant C57BL/6 mice were exposed to 50 μg/m PM for 2 h on five consecutive days starting at embryonic day 12.

View Article and Find Full Text PDF

Purpose: CL316,243 (CL), a beta 3 adrenergic receptor (B3-AR) agonist has 'exercise mimetic' effects in adipose tissue (AT). CL may also positively affect skeletal muscle (SM), yet the role of estrogen receptor beta (ERβ) in mediating SM-specific effects of CL is not known. We investigated the effects of CL on SM metabolism, as well as the role played by ERβ.

View Article and Find Full Text PDF

A myotropic AAV vector combined with skeletal muscle -regulatory elements improve glycogen clearance in mouse models of Pompe disease.

Mol Ther Methods Clin Dev

June 2025

Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.

Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.

View Article and Find Full Text PDF