Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study addresses the multi-objective trade-offs among energy consumption, thermal comfort, and construction cost in rural buildings by proposing a performance optimization framework that integrates Building Energy Simulation (BES), Artificial Neural Networks (ANN), and Multi-Criteria Decision-Making (MCDM). The method combines DesignBuilder modeling with JePlus batch simulations, incorporates the Morris method for key parameter sensitivity analysis, and utilizes MATLAB to construct an ANN-based prediction model. The TOPSIS approach is then used to select the optimal design solution. This framework significantly improves prediction accuracy and optimization efficiency under high-dimensional design spaces, overcoming the limitations of conventional platforms in convergence speed and computational complexity. A case study of a typical rural house in Chuzhou, Anhui Province, demonstrates that the optimized model reduces total energy consumption by 61.64% and discomfort hours by 32.04%, with an additional cost of ¥73,519.6, achieving a well-balanced improvement in overall performance. The study contributes a novel BES-ANN-MCDM framework, offering a replicable pathway and theoretical foundation for performance-driven, energy-efficient rural building design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12391347 | PMC |
http://dx.doi.org/10.1038/s41598-025-17605-x | DOI Listing |