A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimizing rural building design with an intelligent framework integrating BES ANN and MCDM. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study addresses the multi-objective trade-offs among energy consumption, thermal comfort, and construction cost in rural buildings by proposing a performance optimization framework that integrates Building Energy Simulation (BES), Artificial Neural Networks (ANN), and Multi-Criteria Decision-Making (MCDM). The method combines DesignBuilder modeling with JePlus batch simulations, incorporates the Morris method for key parameter sensitivity analysis, and utilizes MATLAB to construct an ANN-based prediction model. The TOPSIS approach is then used to select the optimal design solution. This framework significantly improves prediction accuracy and optimization efficiency under high-dimensional design spaces, overcoming the limitations of conventional platforms in convergence speed and computational complexity. A case study of a typical rural house in Chuzhou, Anhui Province, demonstrates that the optimized model reduces total energy consumption by 61.64% and discomfort hours by 32.04%, with an additional cost of ¥73,519.6, achieving a well-balanced improvement in overall performance. The study contributes a novel BES-ANN-MCDM framework, offering a replicable pathway and theoretical foundation for performance-driven, energy-efficient rural building design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12391347PMC
http://dx.doi.org/10.1038/s41598-025-17605-xDOI Listing

Publication Analysis

Top Keywords

rural building
8
building design
8
energy consumption
8
optimizing rural
4
design
4
design intelligent
4
framework
4
intelligent framework
4
framework integrating
4
integrating bes
4

Similar Publications