A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mineral-Armored Structure Enhanced the Stability of Polyethylene Microplastics Rather Than Polylactic Acid Microplastics: A Long-Term Natural Aging Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aging of microplastics (MPs) depends on their surrounding environment and has significant implications for their environmental behavior and ecological risks. However, there are limited data on the long-term aging of MPs in different natural environments. The natural aging characteristics of polyethylene MPs (PE-MPs) and polylactic acid MPs (PLA-MPs) exposed to air, soil surface, and subsurface conditions for 6 and 12 months, respectively, were evaluated. The results showed that PE-MPs and PLA-MPs exhibited distinct aging characteristics under identical conditions. Photolysis represents the primary aging mechanism for PE-MPs, and prolonged solar radiation significantly reduces their stability ( < 0.05). Notably, soil minerals (e.g., Illite and quartz) formed armor-like coatings encapsulating PE-MP surfaces through chemical interfacial interactions (C-Si-O, Si-O-C, and Al-O-C)─a novel mechanism enhancing PE stability in soils. However, the stable interfacial adhesion between soil minerals and PLA-MPs is minimal. Microbial degradation as the primary aging mechanism renders PLA-MPs in soil more susceptible to aging compared to those in air, consequently exhibiting lower stability. This study highlights the mineral-mediated aging of MPs in soil and demonstrates how mineral coatings enhance the stability of PE-MPs. This underscores the necessity of incorporating mineral-mediated aging processes into MP risk assessments for soil ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5c09806DOI Listing

Publication Analysis

Top Keywords

aging
10
polylactic acid
8
natural aging
8
aging mps
8
aging characteristics
8
primary aging
8
aging mechanism
8
soil minerals
8
mineral-mediated aging
8
soil
6

Similar Publications