Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The growing demand for low-frequency, broadband vibration and noise suppression technologies in next-generation mechanical equipment has become increasingly urgent. Effective negative mass locally resonant structures represent one of the most paradigmatic classes of acoustic metamaterials. Their unique elastic wave bandgaps enable efficient suppression of low-frequency vibrations, while inherent nonlinear effects provide significant potential for the design and tunability of these bandgaps. To achieve ultra-low-frequency and ultra-broadband vibration attenuation, this study employs Duffing oscillators exhibiting negative-stiffness characteristics as structural elements, establishing a bistable nonlinear acoustic-metamaterial mechanical model. Subsequently, based on the effective negative mass local resonance theory, the perturbation solution for the dispersion curves is derived using the perturbation method. Finally, the effects of mass ratio, stiffness ratio, and nonlinear term on the starting and cutoff frequencies of the bandgap are analyzed, and key geometric parameters influencing the design of ultra-low vibration reduction bandgaps are comprehensively investigated. Subsequently, the influence of external excitation amplitude and the nonlinear term on bandgap formation is analyzed using numerical computation methods. Finally, effective positive mass, negative mass, and zero-mass phenomena within distinct frequency ranges of the bandgap and passband are examined to validate the theoretically derived results. The findings demonstrate that, compared to a positive-stiffness system, the bandgap of the bistable nonlinear acoustic metamaterial incorporating negative-stiffness Duffing oscillators shifts to higher frequencies and widens by a factor of 2. The external excitation amplitude changes the bandgap starting frequency and cutoff frequency. As increases, the starting frequency rises while the cutoff frequency decreases, resulting in a narrowing of the bandgap width. Within the frequency range bounded by the bandgap starting frequency and cutoff frequency, the region between the resonance frequency and cutoff frequency corresponds to an effective negative mass state, whereas the region between the bandgap starting frequency and resonance frequency exhibits an effective positive mass state. Critically, the bandgap encompasses both effective positive mass and negative mass regions, wherein vibration propagation is suppressed. Concurrently, a zero-mass state emerges within this structure, with its frequency precisely coinciding with the bandgap cutoff frequency. This study provides a theoretical foundation and practical guidelines for designing nonlinear acoustic metamaterials targeting ultra-low-frequency and ultra-broadband vibration and noise mitigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389181PMC
http://dx.doi.org/10.3390/nano15161269DOI Listing

Publication Analysis

Top Keywords

negative mass
24
cutoff frequency
20
effective negative
16
starting frequency
16
frequency
14
bistable nonlinear
12
nonlinear acoustic
12
acoustic metamaterials
12
effective positive
12
positive mass
12

Similar Publications

The global rise in antibiotic resistance demands the urgent development of new antibacterial agents. This study investigated the antibacterial potential of four synthesized methoxy and thiophene chalcone derivatives (designated 3a, 4a, 3b, and 4b) against clinically relevant bacterial pathogens. These compounds were prepared through Claisen-Schmidt condensation, while their chemical structures were verified through applying Fourier-transform infrared, mass spectrometry, H nuclear magnetic resonance (NMR), and C NMR.

View Article and Find Full Text PDF

Background: The SARS-CoV-2 virus has evolved subvariants since the emergence of the omicron variant in 2021. Whether these changes impact viral shedding and transmissibility is not known.

Methods: POSITIVES is a prospective longitudinal cohort of individuals with mild SARS-CoV-2 infection.

View Article and Find Full Text PDF

Soft tissue sarcomas are a heterogeneous group of malignancies arising from mesenchymal cells. Recent advancements in genomic profiling have identified novel gene fusions in these tumors, offering new insights into their pathogenesis and potential therapeutic targets. Here, we describe a spindle cell sarcoma harboring a novel gene fusion.

View Article and Find Full Text PDF

A method for determination of ten kinds of sweeteners in soybean products by multi-plug filtration cleanup (-PFC) combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. The sample was extracted with acetonitrile (containing 1% formic acid), degreased by using -hexane liquid-liquid extraction and purified by solid phase extraction using an -PFC column (Oasis PRiME HLB). The analytes were separated by using a Waters ACQUITY UPLC® BEH C (2.

View Article and Find Full Text PDF

Research suggests that Problem Gambling (PG) may result from maladaptive emotional regulation strategies aimed at escaping emotions and stress caused by negative life events and trauma. The current study, aimed to examine the effect of exposure to the mass trauma of October 7, 2023 terror attack and the consequent Swords of Iron war in Israel, and difficulties in emotional regulation on PG. We utilized longitudinal data of self-reports in the Problem Gambling Severity Index collected before the terror attack (April 2022) and during the Swords of Iron war (December 2023, March 2024, June 2024; N = 899) from a large sample of adult Jewish Israelis.

View Article and Find Full Text PDF