Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Histopathological images play a crucial role in diagnosing skin cancer. However, due to the very large size of digital histopathological images (typically in the order of billion pixels), manual image analysis is tedious and time-consuming. Therefore, there has been significant interest in developing Artificial Intelligence (AI)-enabled computer-aided diagnosis (CAD) techniques for skin cancer detection. Due to the diversity of uncertain cell boundaries, automated nuclei segmentation of histopathological images remains challenging. Automating the identification of abnormal cell nuclei and analyzing their distribution across multiple tissue sections can significantly expedite comprehensive diagnostic assessments. In this paper, a deep neural network (DNN)-based technique is proposed to segment nuclei and detect melanoma in histopathological images. To achieve a robust performance, a test image is first augmented by various geometric operations. The augmented images are then passed through the DNN and the individual outputs are combined to obtain the final nuclei-segmented image. A morphological technique is then applied on the nuclei-segmented image to detect the melanoma region in the image. Experimental results show that the proposed technique can achieve a Dice score of 91.61% and 87.9% for nuclei segmentation and melanoma detection, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387607 | PMC |
http://dx.doi.org/10.3390/jimaging11080274 | DOI Listing |