98%
921
2 minutes
20
Cell proliferation plays a pivotal role in multiple physiological processes, including osteoporosis alleviation, wound healing, and immune enhancement. Numerous novel peptides with cell proliferation-promoting activity have been identified. These peptides exert their functions by modulating key cellular signaling pathways, thereby regulating diverse biological processes related to cell proliferation. This work summarizes peptides derived from animals and plants that stimulate cell proliferation, focusing on their amino acid composition, physicochemical properties, and preparation techniques. Furthermore, we highlight the major signaling pathways-such as the PI3K/Akt, MAPK/ERK, and Wnt/β-catenin pathways-that have been implicated in the mechanistic studies of food-derived peptides. Through the analysis and summary of previous studies, we observe a notable lack of in vivo animal models and clinical trials, indicating that these may represent promising directions for future research on food-derived bioactive peptides. Meanwhile, the potential safety concerns of proliferation-enhancing peptides-such as immunogenicity, appropriate dosage, and gastrointestinal stability-warrant greater attention. In summary, this review provides a comprehensive overview of the sources and mechanisms of cell proliferation-promoting peptides and addresses the challenges in industrializing bioactive peptide-based functional foods; therefore, further research in this area is encouraged.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388546 | PMC |
http://dx.doi.org/10.3390/metabo15080505 | DOI Listing |
Research (Wash D C)
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.
View Article and Find Full Text PDFBiomed Rep
November 2025
College of Public Health, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.
flavones (PRFs), bioactive components derived from the plant, exhibit anti-inflammatory and anti-tumor properties. However, their therapeutic potential for bladder cancer remains poorly understood. The present study aimed to investigate the anti-tumor effects and molecular mechanisms underlying the effects of PRF on human bladder cancer T24 cells.
View Article and Find Full Text PDFBiomed Rep
November 2025
Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan.
Cell senescence is a state of stable proliferation arrest characterized by morphological changes and high senescence-associated β-galactosidase (SA-β-gal) activity. Inducing senescence in cancer cells is beneficial for cancer therapy due to proliferation arrest, however, the mechanisms underlying this process remain insufficiently understood. Therefore, the present study investigated the mechanisms of radiation-induced cellular senescence in A549 human lung cancer cells, focusing on the DNA damage response and cell cycle regulation.
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
September 2025
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China.
Background: The methylation of and its influence on protein stability and degradation could play a crucial role in the pathogenesis of type 2 diabetes mellitus (T2DM), although the underlying molecular mechanisms are not yet fully understood. This study investigates the molecular and bioinformatic features of methylation in T2DM.
Methods: Bioinformatics analyses were conducted on the T2DM database chip.
EJHaem
October 2025
Division of Endocrinology Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine Graduate School of Medicine University of the Ryukyus Ryukyus Japan.
Introduction: We previously reported that sodium-glucose co-transporter 2 (SGLT-2) was ectopically overexpressed in adult T-cell leukemia (ATL) cells notably in aggressive type but in indolent type, and widely-used anti-diabetic SGLT-2 inhibitors (SGLT-2i) considerably attenuated proliferation of leukemic cells.
Methods: We performed retrospective analyses for 10 years to see whether SGLT-2i would prevent aggressive transformation in patients with indolent type ATL accompanied by diabetes. Nucleosome occupancy in the promotor region of the gene was also assessed to explore the possible involvement of epigenetic modification in such an ectopic overexpression.