Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-invasive, continuous monitoring of carotid artery hemodynamics may provide valuable insights on cerebral blood perfusion (CBP). Near-infrared spectroscopy (NIRS) is a non-invasive modality that may be a good candidate for real-time carotid artery monitoring. We designed a wearable NIRS system to monitor the left and right radial and carotid arteries in 20 healthy subjects. The changes in total hemoglobin concentration (HbT) and tissue oxygen saturation (StO) in all 80 arteries were continuously monitored in response to changes in oxygen supply. Wilcoxon non-parametric equivalence testing was used to compare changes in the radial (reference) and carotid arteries. The system-derived HbT and StO trends matched the expected physiological responses over time in the radial and carotid arteries. The mean peak-to-peak amplitude [uM] of HbT during sustained deep breathing was practically equivalent between the left radial (0.9 ± 0.8) and left carotid (1.6 ± 1.1) arteries ( = 0.01). The mean peak-to-peak amplitude [%] of StO was practically equivalent between the left radial (0.3 ± 0.2) and left carotid (0.3 ± 0.2) arteries ( < 0.001) and the right radial (0.4 ± 0.5) and right carotid (0.5 ± 0.4) arteries ( = 0.001). These findings indicate that NIRS may be a good option for monitoring the carotid arteries to track changes in CBP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384115PMC
http://dx.doi.org/10.3390/bios15080549DOI Listing

Publication Analysis

Top Keywords

carotid arteries
28
carotid artery
12
left radial
12
radial carotid
12
carotid
10
near-infrared spectroscopy
8
continuous monitoring
8
monitoring carotid
8
arteries
8
peak-to-peak amplitude
8

Similar Publications

We evaluated the systemic cardiovascular and carotid baroreflex support of arterial pressure during recovery from whole-body, passive heating in young and older adults. Supine mean arterial pressure (MAP), cardiac output (Q; acetylene washin), systemic vascular conductance (SVC), heart rate (HR), and stroke volume (SV) were evaluated in 16 young (8F, 18-29 years) and nine older (6F, 61-73 years) adults at normothermic baseline and for 60-min passive heating and 120-min normothermic recovery. Externally applied neck pressure was used to evaluate HR, brachial vascular conductance, and MAP responses to carotid baroreceptor unloading.

View Article and Find Full Text PDF

This study investigated the association between parameters derived from bioelectrical impedance spectroscopy (BIS) and arterial stiffness, as measured using carotid-femoral pulse wave velocity (cfPWV) and brachial-ankle pulse wave velocity (baPWV) pulse wave velocities. Data from 292 Japanese adults were analyzed. BIS was used to assess the phase angle (PhA), extracellular water to intracellular water ratio (ECW/ICW), and body cell mass-to-free fat mass ratio (BCM/FFM).

View Article and Find Full Text PDF

Objectives: The authors hypothesized that the origin of the right coronary artery (RCA) is a direct continuation of the major aortic arch branches (MAAB) takeoff plane, which may have implications for brachiocephalic interventions and next generation transcatheter aortic valve intervention (TAVI) embolic protection devices (EPDs).

Methods: In this single-center, retrospective, cross-sectional study, the authors analyzed computed tomographic angiography (CTA) images from 92 patients undergoing TAVI evaluation to determine the spatial relationship between the origin of the RCA and the MAAB takeoff plane. Patients with prior cardiothoracic or aortic interventions and those with anomalous RCA origin were excluded.

View Article and Find Full Text PDF

Background: Carotid artery stenosis is a major cause of stroke. Non-contrast MR angiography (MRA) using time-spatial labeling inversion pulse (Time-SLIP) may offer potential advantages over 3D time-of-flight (TOF)-MRA for simultaneous visualization of carotid, vertebral, and subclavian arteries, but remains uninvestigated.

Purpose: To determine optimal black blood inversion time (TI) for visualizing the carotid and subclavian arteries using three-dimensional (3D) fast field echo (FFE) Time-SLIP MRA, and to compare its image quality with 3D TOF-MRA.

View Article and Find Full Text PDF