Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Scaffold architecture with complementary features on the surface brings the desired properties in the surface chemistry. That structure plays a critical role in tissue engineering to tailor cell behaviour and promote effective transport for cell growth and tissue regeneration. In this work, a controllable interconnected three-dimensional (3D) porous scaffold with surface micropatterning was fabricated. Nozzle-based Aerojet dispenser 3D printing was used to form printed ice as a fugitive ink combined with a freeze-drying method of gelatin/nano-silica/poly lactic--glycolic acid (PLGA) and ice particulates to fabricate a composite scaffold with supporting properties. Several designs of printed ice were explored and the HUVECs' behavior on different surface patterns was analyzed. The results showed that HUVECs exhibited orientation adhesion and growth with a certain direction after 6 days of culture. The 3D-controlled interconnected porous scaffolds with surface micropatterning then were used for the 3D culture of hMSCs. The hMSCs analysis showed a facilitating effect for cell distribution and growth in the 3D composite scaffolds compared to the control scaffold without interconnected porous structure and surface micropatterning. This study demonstrated that controlled cell behavior by patterning the surface of the scaffold and improved cell growth by controlling the interconnected inner porous scaffold has a significant role in bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377308 | PMC |
http://dx.doi.org/10.1039/d5ra02891d | DOI Listing |