Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
To address the high flammability and toxic smoke emission of flexible PVC (fPVC), a magnesium-molybdenum-phosphorus multi-component flame retardant (MO@MH-PEPE) was constructed by surface-modifying self-synthesized molybdenum oxide-hybridized magnesium hydroxide (MO@MH) with phenolic epoxy phosphate ester (PEPE). Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) confirmed the chemical grafting of PEPE onto MO@MH P-O-Mg bonds, enhancing interfacial compatibility. When incorporated into fPVC, the fPVC/MO@MH-PEPE composite exhibited superior flame retardancy and smoke suppression: limiting oxygen index (LOI) increased to 32.0%, UL-94 reached V-0 rating, peak heat release rate (pHRR) and total smoke production (TSP) decreased by 47.16% and 75.15% compared with the fPVC/MH composite, respectively. The char residue yield (50.00 wt%) and graphitization degree significantly improved, attributed to Mo/Mo redox catalysis and phosphoric acid charring. Thermogravimetry analysis-FTIR (TGA-FTIR) revealed gas-phase flame inhibition HO dilution. Furthermore, PEPE modification optimized mechanical properties, increasing tensile and impact strength by 28.35% and 6.50% over fPVC/MO@MH, supported by SEM-proven interfacial adhesion. This work demonstrates a synergistic Mg-Mo-P system for high-performance fPVC composites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377343 | PMC |
http://dx.doi.org/10.1039/d5ra04341g | DOI Listing |