98%
921
2 minutes
20
Spodumene, a lithium-rich pyroxene mineral, exhibits a wide range of colors and distinctive luminescent properties, yet the mechanisms underlying its coloration and fluorescence remain incompletely understood. In this study, twelve natural spodumene samples of varying colors (purple, yellow, green, and nearly colorless) were systematically analyzed by modern testing technology. Color variation of the sample is primarily controlled by the Mn/Fe ratio, with purple tones corresponding to Mn/Fe > 1, yellow to green to Mn/Fe < 1, and colorless samples showing negligible Mn and Fe content. All samples exhibited two emission centers near 420 nm and 600 nm, attributed to lattice defects and the T(4G) → A(6S) transition of Mn, respectively. The 600 nm emission band is responsible for the observed orange-red fluorescence under long-wave UV light. Fluorescence intensity was negatively correlated with Fe content, and fluorescence lifetimes at 600 nm increased with Mn concentration, reaching approximately 4000 μs in Mn-rich samples. These findings not only clarify the synergistic role of lattice defects, Mn activators, and Fe quenchers in controlling the coloration and luminescence mechanisms of spodumene, but also offer a scientific foundation for engineering synthetic luminescent materials with targeted chromatic properties and for gemological enhancement strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376981 | PMC |
http://dx.doi.org/10.1039/d5ra04044b | DOI Listing |
Front Nutr
August 2025
Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
Background: Voghera pepper (VP) extracts were demonstrated to have anti-oxidant ability in several cell types.
Purpose: This study aimed to assess whether VP-extracts could lower oxidative stress and modulate thyroid cancer (TC) cells behavior .
Methods: Extracts were analyzed using the LC-DAD-MS system.
Nutr Res
August 2025
Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, Republic of Korea. Electronic address:
Although fruits and vegetables were studied botanically in previous studies, few have examined their associations with gastrointestinal (GI) cancer risk based on color classification. Color is familiar to the public and translates phytochemical science into dietary guidance. We hypothesized that the intake of fruits and vegetables would be differently associated with GI cancer risk by color.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2025
Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081 Ulm, Germany.
Bacterial inflammatory skin conditions, especially those caused by Cutibacterium acnes (C. acnes), are among the most common skin diseases globally. While C.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, School of Tropical Agriculture and Forestry, Hainan University, DanZhou 571737, China. Electronic address:
Cyantraniliprole is a widely used insecticide in rice that could induce cellular damage. However, the mechanism of cyantraniliprole induced cell apoptosis was not clear. The Split-Split-Plot analysis revealed that the expression of apoptosis-related genes was significantly impacted by exposure time, concentration, genotype, and their complex interactions.
View Article and Find Full Text PDFJ Fluoresc
September 2025
Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India.
This study reports the synthesis, characterization, and multifunctional sensing capabilities of a novel quinoline-based Schiff base ligand (L), designed for selective and sensitive detection of Ni, Cu, Zn ions, and CO⁻ anions. L exhibits distinct colorimetric responses visible to the naked eye-pale yellow to amber red for Ni, caramel brown for Cu, and canary yellow for Zn-enabling efficient and straightforward detection. Fluorescence studies reveal a selective green fluorescence "turn-on" response for Zn, complemented by fluorescence quenching in the presence of CO⁻, demonstrating the ligand's reusability and robustness.
View Article and Find Full Text PDF