98%
921
2 minutes
20
Background: A growing body of evidence suggests a relationship between gut microbiome and circulating cytokines, yet there is still a lack of large-scale population-based studies investigating gut microbiome-cytokine associations. In this cross-sectional study, we aimed at investigating the associations of gut microbiome (exposure variable) with 45 cytokines and C-reactive protein (CRP) (outcome variables) in the population-based FINRISK 2002 cohort (N = 2,398). Our analyses focused mainly on gut microbiome alpha diversity, beta diversity, differentially abundant taxa, and predicted functions. All statistical models were adjusted for age, sex, BMI, diabetes, and smoking.
Results: Using linear modeling, we identified an inverse association of the gut microbial alpha diversity (Shannon index) with CRP (β=-0.062 ± 0.019/standard deviation (SD), False Discovery Rate adjusted p-value (FDR-P) = 0.025), interleukin-8 (IL-8) (β=-0.066 ± 0.021/SD, FDR-P = 0.025), and interferon-γ-inducible protein 10 (IP-10) (β=-0.063 ± 0.02/SD, FDR-P = 0.025). For beta diversity, linear modeling revealed that the first axis of Principal Component Analysis (PCA) describing the most strongly varying parts of the microbial community composition across population was inversely associated with CRP (β=-0.071 ± 0.019/SD, FDR-P = 0.008) and the second axis was inversely associated with macrophage inflammatory protein-1β (MIP-1B) (β=-0.082 ± 0.021/SD, FDR-P = 0.008), and monokine induced by interferon-γ (MIG) (β=-0.071 ± 0.019/SD, FDR-P = 0.008). The majority of the top taxa contributing to the first and second PCA axes belonged to class Bacilli (7/10) and class Gammaproteobacteria (9/10), respectively. In addition to this, we detected 8 significant associations of specific gut microbiome taxa (species-level) with cytokines and CRP using linear models. The majority of significant taxa belonged to class Clostridia_258483 (5/8) and class Bacteroidia (2/8). We did not detect any significant associations between species-specific predicted MetaCyc pathways (using all prevalent pathways) and cytokines or CRP. When analysis was limited to pathways associated with significant species only, we observed a positive association between purine synthesis predicted pathways in B. thetaiotaomicron and CRP.
Conclusions: Taken together, these results show that CRP, MIP-1B, IL-8, and other cytokines are associated with gut microbial diversity and composition, as well as specific taxa. This could lay the groundwork for future experimental studies to assess the causality of these associations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379326 | PMC |
http://dx.doi.org/10.1186/s13099-025-00742-z | DOI Listing |
Arq Gastroenterol
September 2025
The Japanese Society of Internal Medicine, Editorial Department, Tokyo, Japan.
Background: This study aims to analyze research trends and emerging insights into gut microbiota studies from 2015 to 2024 through bibliometric analysis techniques. By examining bibliographic data from the Web of Science (WoS) Core Collection, it seeks to identify key research topics, evolving themes, and significant shifts in gut microbiota research. The study employs co-occurrence analysis, principal component analysis (PCA), and burst detection analysis to uncover latent patterns and the development trajectory of this rapidly expanding field.
View Article and Find Full Text PDFAnesthesiology
September 2025
Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida.
Background: The brain-gut-microbiome (BGM) axis is a communication network through which the brain and gastrointestinal microbiota interact via neural, hormonal, immune, and gene expression mechanisms. Gut microbiota dysbiosis is thought to contribute to neurocognitive disorders, including perioperative neurocognitive disorder (PND), and to various metabolic abnormalities. Recently, we reported that sevoflurane induces neurocognitive deficits in exposed rats as well as their future offspring, with male offspring being particularly affected (intergenerational PND).
View Article and Find Full Text PDFCurr Atheroscler Rep
September 2025
Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.
Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.
Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.
Food Funct
September 2025
College of Food Science, Southwest University, Chongqing, 400715, China.
Bifidobacteria are naturally found in the human gut and quickly establish dominance shortly after birth, playing a crucial role in the development and stability of the infant gut microbiota. A growing body of research suggests that host and environmental factors shape the colonization and the relative abundance of bifidobacteria in the infant gut during early life. Understanding the factors that influence bifidobacterial colonization and maintaining normal colonization levels are keys to ensuring gut health.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus.
Probiotics are live beneficial microorganisms that confer health benefits to the host when administered in adequate amounts, have gained considerable scientific and commercial interest for their ability to support gut health, strengthen immunity, and reduce disease risk. This review traces the genesis of probiotic science from its origins in traditional fermented foods to contemporary clinical applications, offering a conceptual understanding of its evolution. A clear distinction is drawn between endogenous probiotics, naturally resident in the human microbiome, and exogenous probiotics, introduced via dietary supplements and functional foods.
View Article and Find Full Text PDF