98%
921
2 minutes
20
Molecular generation is a cutting-edge technology with the potential to revolutionize intelligent drug discovery. However, currently reported ligand-based or structure-based molecular generation methods remain unpractical for real-world drug discovery. Here we propose an explicit pharmacophore-oriented 3D molecular generation method, termed PhoreGen. PhoreGen employs asynchronous perturbations and updates on both atomic and bond information, coupled with a message-passing mechanism that incorporates prior knowledge of ligand-pharmacophore mapping during the diffusion-denoising process. Evaluations revealed that PhoreGen efficiently generates 3D molecules well aligned with pharmacophores, maintaining good chemical reasonability, diversity, drug-likeness and binding affinity and, importantly, produces feature-customized molecules at high frequency. By using PhoreGen, we successfully identified new bicyclic boronate inhibitors of evolved metallo-β-lactamase and serine-β-lactamases, which potentiate meropenem against clinically isolated superbugs. Moreover, we identified inhibitors of metallo-nicotinamidases, emerging targets for insecticides. This work explores an explicitly constrained mode for molecular generation and demonstrates its potential in feature-customized drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s43588-025-00850-5 | DOI Listing |
Genome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFGenome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFEMBO J
September 2025
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.
View Article and Find Full Text PDFProtoplasma
September 2025
Vavilov Institute of General Genetics RAS, Moscow, Russia.
Large interstitial telomeric regions are considered remnants and markers of chromosomal rearrangements or a result of several suggested molecular mechanisms of telomere repeats accumulation. More rare are cases when large interstitial repeats are found not close to, but at a distance from the centromere. However, synapsis, recombination, and effects on chromatin near these regions during meiotic prophase I have not been sufficiently studied.
View Article and Find Full Text PDF