Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

G-quadruplex DNA structures exhibit a profound influence on essential biological processes, including transcription, replication, telomere maintenance, and genomic stability. These structures have demonstrably shaped organismal evolution. However, a comprehensive, organism-wide G-quadruplex map encompassing the diversity of life has remained elusive. Here, we introduce Quadrupia, the most extensive and well-characterized G-quadruplex database to date, facilitating the exploration of G-quadruplex structures across the evolutionary spectrum. Quadrupia has identified G-quadruplex sequences in 108,449 reference genomes, with a total of 140,181,277 G-quadruplexes. The database also hosts a collection of 319,784 G-quadruplex clusters of 20 or more members, annotated by taxonomic distributions, multiple sequence alignments, profile hidden Markov models and cross-references to G-quadruplex 3D structures. Examination of G-quadruplexes across functional genomic elements in different taxa indicates preferential orientation and positioning, with significant differences between individual taxonomic groups. For example, we find that G-quadruplexes in bacteria with a single replication origin display profound preference for the leading orientation. Finally, we experimentally validate the most frequently observed G-quadruplexes using CD-spectroscopy, UV melting, and fluorescent-based approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.279790.124DOI Listing

Publication Analysis

Top Keywords

g-quadruplex structures
8
g-quadruplex
7
g-quadruplexes
5
quadrupia comprehensive
4
comprehensive catalog
4
catalog g-quadruplexes
4
g-quadruplexes genomes
4
genomes tree
4
tree life
4
life g-quadruplex
4

Similar Publications

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.

View Article and Find Full Text PDF

Biological cells use cations as signaling messengers to regulate a variety of responses. Linking cations to the functionality of synthetic membranes is thus crucial to engineering advanced biomimetic agents such as synthetic cells. Here, we introduce bioinspired DNA-based receptors that exploit noncanonical G-quadruplexes for cation-actuated structural and functional responses in synthetic lipid membranes.

View Article and Find Full Text PDF

Background: DNA G-quadruplexes (G4s) are non-canonical secondary structures formed in guanine-rich DNA sequences and play important roles in modulating biological processes through a variety of gene regulatory mechanisms. Emerging G4 profiling allows global mapping of endogenous G4 formation.

Results: Here in this study, we map the G4 landscapes in adult skeletal muscle stem cells (MuSCs), which are essential for injury-induced muscle regeneration.

View Article and Find Full Text PDF

BRCA1 is a crucial component of homologous recombination (HR), a high-fidelity pathway for repairing double-stranded DNA breaks (DSBs) in human cells. The central region of the BRCA1 protein contains two putative DNA binding domains (DBDs), yet their relative substrate specificities and functional contributions to HR remain unclear. Here, we characterized the DNA binding properties of DBD1 (amino acids 330-554), DBD2 (amino acids 894-1057), and BRCA1 C-terminal (BRCT) repeats using biolayer interferometry.

View Article and Find Full Text PDF

TDP-43 binds to RNA G-quadruplex structure and regulates mRNA stability and translation.

Nucleic Acids Res

August 2025

Department of Chemistry and State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Hong Kong SAR, 000000, China.

TDP-43 is a hallmark protein associated with neurodegenerative diseases. Recent studies revealed TDP-43 as an RNA G-quadruplex (rG4)-binding protein, impacting mRNA transport and function. However, our knowledge of the TDP-43-RNA secondary structure interaction and information on its specific rG4 targets are limited.

View Article and Find Full Text PDF