Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Keratoconus (KC) is a progressive corneal ectasia leading to visual impairment if untreated. Corneal collagen cross-linking (CXL) is an effective treatment to halt KC progression by strengthening corneal biomechanics. However, current CXL treatments lack customization based on regional corneal stiffness, which is crucial for optimal outcomes. This study introduces a novel approach using Stress-Strain Index (SSI) maps to evaluate localized CXL effects on corneal biomechanics. Numerical modelling based on the finite element method was used to carry out inverse analysis of the human eye to simulate KC and CXL treatments, incorporating regional stiffness variations based on collagen fibril density. SSI maps were generated pre- and post-CXL to assess stiffness changes in treated regions. Results demonstrated that CXL increased corneal stiffness within the treated area, but the extent of stiffness recovery varied with CXL diameter and alignment with the KC cone. Smaller CXL diameters led to higher localized stiffness increases, while misalignment between CXL and KC areas resulted in suboptimal biomechanical restoration. The study highlights the potential of SSI mapping for personalized CXL treatments, enabling precise targeting of biomechanically weakened regions to restore corneal health. This approach contributes to the development of biomechanics-based customization of CXL therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380491 | PMC |
http://dx.doi.org/10.1098/rsif.2025.0234 | DOI Listing |