98%
921
2 minutes
20
We discuss the dependence of the critical properties of the Anderson model on the dimension in the language of -function and renormalization group recently introduced in Vanoni et al. [C. Vanoni , , e2401955121 (2024)] in the context of Anderson transition on random regular graphs. We show how in the delocalized region, including the transition point, the one-parameter scaling part of the -function for the fractal dimension [Formula: see text] evolves smoothly from its [Formula: see text] form, in which [Formula: see text], to its [Formula: see text] form, which is represented by the random regular graph (RRG) result. We show how the [Formula: see text] expansion and the [Formula: see text] expansion around the RRG result can be reconciled and how the initial part of a renormalization group trajectory governed by the irrelevant exponent depends on dimensionality. We also show how the irrelevant exponent emerges out of the high-gradient terms of expansion in the nonlinear sigma model and put forward a conjecture about a lower bound for the fractal dimension. The framework introduced here may serve as a basis for investigations of disordered many-body systems and of more general nonequilibrium quantum systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1073/pnas.2423763122 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415199 | PMC |
J R Soc Interface
September 2025
UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK.
Severe fever with thrombocytopaenia syndrome virus (SFTSV) was identified by the World Health Organization as a priority pathogen due to its high case-fatality rate in humans and rapid spread. It is maintained in nature through three transmission pathways: systemic, non-systemic and transovarial. Understanding the relative contributions of these transmission pathways is crucial for developing evidence-informed public health interventions to reduce its spillover risks to humans.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid, Jordan.
This study introduces the Wrapped Epanechnikov Exponential Distribution (WEED), a novel circular distribution derived from the Epanechnikov exponential distribution. The probability density function and cumulative distribution function are presented, together with a comprehensive analysis of its properties and parameters, including the characteristic function and trigonometric moments. Parameters are estimated using maximum likelihood estimation (MLE).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712.
Many soft, tough materials have emerged in recent years, paving the way for advances in wearable electronics, soft robotics, and flexible displays. However, understanding the interfacial fracture behavior of these materials remains a significant challenge, owing to the difficulty of quantifying the respective contributions from viscoelasticity and damage to energy dissipation ahead of cracks. This work aims to address this challenge by labeling a series of polymer networks with fluorogenic mechanophores, subjecting them to T-peel tests at various rates and temperatures, and quantifying their force-induced damage using a confocal microscope.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Bioengineering, Stanford University, Stanford, CA 94305.
Despite periods of permanent darkness and extensive ice coverage in polar environments, photosynthetic ice diatoms display a remarkable capability of living inside the ice matrix. How these organisms navigate such hostile conditions with limited light and extreme cold remains unknown. Using a custom subzero temperature microscope during an Arctic expedition, we present the finding of motility at record-low temperatures in a Eukaryotic cell.
View Article and Find Full Text PDFMol Pharm
September 2025
Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.
Liver cancer, particularly hepatocellular carcinoma (HCC), poses significant treatment challenges due to chemoresistance and cancer recurrence. Similar to customs at the border, the liver detoxifies incoming chemicals via efflux pumps and overexpresses ATP-binding cassette (ABC) drug exporters, leading to chemoresistance. ABC contains a multihomosubunit structure and a revolving transport mechanism, actively effluxing drugs from cancer cells, thereby reducing intracellular drug accumulation and therapeutic efficacy.
View Article and Find Full Text PDF