Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
With the exponential growth of big data in domains such as telemedicine and digital forensics, the secure transmission of sensitive medical information has become a critical concern. Conventional steganographic methods often fail to maintain diagnostic integrity or exhibit robustness against noise and transformations. In this study, we propose a novel deep learning-based steganographic framework that combines Squeeze-and-Excitation (SE) blocks, Inception modules, and residual connections to address these challenges. The encoder integrates dilated convolutions and SE attention to embed secret medical images within natural cover images, while the decoder employs residual and multi-scale Inception-based feature extraction for accurate reconstruction. Designed for deployment on NVIDIA Jetson TX2, the model ensures real-time, low-power operation suitable for edge healthcare applications. Experimental evaluation on MRI and OCT datasets demonstrates the model's efficacy, achieving Peak Signal-to-Noise Ratio (PSNR) values of 39.02 and 38.75, and Structural Similarity Index (SSIM) values of 0.9757, confirming minimal visual distortion. This research contributes to advancing secure, high-capacity steganographic systems for practical use in privacy-sensitive environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378176 | PMC |
http://dx.doi.org/10.1038/s41598-025-16394-7 | DOI Listing |