Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Biological nervous systems rely on distinct spiking frequencies across a wide range for perceiving, transmitting, processing, and executing information. Replicating this frequency range in an artificial neuron would facilitate the emulation of biosignal diversity but it remains challenging. Here, we develop an ion-electronic hybrid artificial neuron by compactly integrating a nonlinear electrochemical element with a solid-state memristor. This hybrid neuron employing a minimalist architecture exhibits a tunable spiking frequency spanning five orders of magnitude, significantly surpassing the capability of artificial neurons based on electronic devices. Notably, stimuli-dependent ion fluxes enable inherent afferent sensing of liquid flow, temperature, and chemical constituents, eliminating the need for separate, bulky sensors. Connection to biomotor nerves facilitates muscle actuation with frequency-regulated modes. The frequency encoding of a hybrid neuron array allows for the recognition of handwritten patterns. This hybrid neuron design, taking advantage of both ionic and electronic features, offers a promising approach for advanced e-skin and neurointerface technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379150 | PMC |
http://dx.doi.org/10.1038/s41467-025-63195-7 | DOI Listing |