Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emergency department (ED) overcrowding contributes to delayed patient care and worse clinical outcomes. Traditional triage systems face accuracy and consistency limitations. This study developed and internally validated a machine learning model predicting intensive care unit (ICU) admissions and resource utilization in ED patients. A retrospective analysis of 163,452 ED visits (2018-2022) from Maharaj Nakhon Chiang Mai Hospital evaluated logistic regression, random forest, and XGBoost models against the Canadian Triage and Acuity Scale (CTAS). The XGBoost model achieved superior predictive performance (AUROC 0.917 vs. 0.882, AUPRC 0.629 vs. 0.333). Key predictors included mode of arrival, patient age, and free-text chief complaints analyzed with multilingual sentence embeddings. These results demonstrate that machine learning, incorporating unstructured text data, has the potential to enhance triage accuracy and resource allocation by more effectively identifying critically ill patients compared to traditional triage methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378333PMC
http://dx.doi.org/10.1038/s41598-025-17180-1DOI Listing

Publication Analysis

Top Keywords

model predicting
8
emergency department
8
traditional triage
8
machine learning
8
triage
5
development internal
4
internal validation
4
validation ai-based
4
ai-based emergency
4
emergency triage
4

Similar Publications

Background: Survivors of critical illness frequently face physical, cognitive and psychological impairments after intensive care. Sensorimotor impairments potentially have a negative impact on participation. However, comprehensive understanding of sensorimotor recovery and participation in survivors of critical illness is limited.

View Article and Find Full Text PDF

Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.

View Article and Find Full Text PDF

Background: Avenanthramides (AVAs) and Avenacosides (AVEs) are unique to oats (Avena Sativa) and may serve as biomarkers of oat intake. However, information regarding their validity as food intake biomarkers is missing. We aimed to investigate critical validation parameters such as half-lives, dose-response, matrix effects, relative bioavailability under single dose, and in relation to the abundance of Feacalibacterium prausnitzii, and under repeated dosing, to understand the potential applications of AVAs and AVEs as biomarkers of oat intake.

View Article and Find Full Text PDF

Background: Current scoring systems for hypertriglyceridaemia-induced acute pancreatitis (HTG-AP) severity are few and lack reliability. The present work focused on screening predicting factors for HTG-SAP, then constructing and validating the visualization model of HTG-AP severity by combining relevant metabolic indexes.

Methods: Between January 2020 and December 2024, retrospective clinical information for HTG-AP inpatients from Weifang People's Hospital was examined.

View Article and Find Full Text PDF

Background: Anxiety symptoms during pregnancy are a frequent mental health issue for expectant mothers and fathers. Research revealed that prenatal anxiety symptoms can impact parent-child bonding and child development. This study aims to investigate the prospective relationship between prenatal anxiety symptoms and general child development and whether it is mediated by parent-child bonding.

View Article and Find Full Text PDF