Leveraging Large Language Models to Advance Certification, Physician Learning, and Diagnostic Excellence.

J Am Board Fam Med

From the American Board of Family Medicine, Lexington, KY (TW, DWP, AWB); Department of Family Medicine, University of Colorado School Anschutz School of Medicine, Aurora, CO (DWP).

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diagnostic errors are a significant challenge in health care, often resulting from gaps in physicians' knowledge and misalignment between confidence and diagnostic accuracy. Traditional educational methods have not sufficiently addressed these issues. This commentary explores how large language models (LLMs), a subset of artificial intelligence, can enhance diagnostic education by improving learning transfer and physicians' diagnostic accuracy. The American Board of Family Medicine (ABFM) is integrating LLMs into its Continuous Knowledge Self-Assessment (CKSA) platform to generate high-quality cloned diagnostic questions, implement effective spaced repetition strategies, and provide personalized feedback. By leveraging LLMs for efficient question generation and individualized learning, the initiative aims to transform continuous certification and lifelong learning, ultimately enhancing diagnostic accuracy and patient care.

Download full-text PDF

Source
http://dx.doi.org/10.3122/jabfm.2024.240385R1DOI Listing

Publication Analysis

Top Keywords

diagnostic accuracy
12
large language
8
language models
8
diagnostic
7
leveraging large
4
models advance
4
advance certification
4
certification physician
4
learning
4
physician learning
4

Similar Publications

Leveraging GPT-4o for Automated Extraction and Categorization of CAD-RADS Features From Free-Text Coronary CT Angiography Reports: Diagnostic Study.

JMIR Med Inform

September 2025

Departments of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China, 86 18922109279, 86 20852523108.

Background: Despite the Coronary Artery Reporting and Data System (CAD-RADS) providing a standardized approach, radiologists continue to favor free-text reports. This preference creates significant challenges for data extraction and analysis in longitudinal studies, potentially limiting large-scale research and quality assessment initiatives.

Objective: To evaluate the ability of the generative pre-trained transformer (GPT)-4o model to convert real-world coronary computed tomography angiography (CCTA) free-text reports into structured data and automatically identify CAD-RADS categories and P categories.

View Article and Find Full Text PDF

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer among women and a leading cause of mortality in Europe. Early detection through screening reduces mortality, yet participation in mammography-based programs remains suboptimal due to discomfort, radiation exposure, and accessibility issues. Thermography, particularly when driven by artificial intelligence (AI), is being explored as a noninvasive, radiation-free alternative.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF