Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hip disarticulation (HD) amputees face mobility challenges due to the loss of hip, knee, and ankle joints. Current hip-knee-ankle-foot (HKAF) prostheses are entirely passive and require excessive compensatory movements to operate, leading to fatigue and long-term complications. Seeking to address these limitations, this study developed a HD user-centric, walking speed adaptable control strategy paired with a hip-motorized HKAF to emulate gait characteristics of transfemoral amputees. A prototype "Power Hip" was instrumented with internal sensors (IMUs, load cells, joint encoders) to create a prosthetic unit that could be worn without the need for external sensors. A hierarchical gait control strategy was developed to utilize these sensors to calculate the desired hip states and actuate the joint. To evaluate capabilities of the control strategy, an HD amputee participant was recruited to undergo training with Power Hip. Once training was complete, motion captured kinematics and onboard sensor data were analyzed across slow, self-paced, and fast walking speed trials. The Power Hip enabled walking speeds of 0.69-1.01 m/s, with stride parameters aligning with transfemoral amputee outcome measures. Hip extension velocities (60.2-104.9°/s) matched transfemoral kinematics, though swing-phase knee flexion magnitude and velocity were reduced compared to transfemoral benchmarks. The prototype demonstrated a 52° hip range of motion, surpassing conventional passive hip joints, and adapted to speed changes automatically. This research paves the way for advanced prosthetic solutions to improve quality of life for people with hip-level amputations.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2025.3602715DOI Listing

Publication Analysis

Top Keywords

control strategy
16
hip
9
gait control
8
walking speed
8
power hip
8
design preliminary
4
preliminary evaluation
4
evaluation gait
4
control
4
strategy
4

Similar Publications

Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-laden foam cells and plaques within the arterial wall. Dysfunctional vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, and macrophages contribute to disease progression. Here, we report that macrophage-specific expression of epsins, highly conserved endocytic adaptor proteins involved in clathrin-mediated endocytosis, accelerates atherosclerosis in Western diet-fed mice.

View Article and Find Full Text PDF

New strategies to enhance the efficacy of PD-1/PD-L1 inhibitors in treating microsatellite stable colorectal cancer.

Future Oncol

September 2025

Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China.

Immune checkpoint therapy has demonstrated significant potential in the treatment of various solid tumors. Among these, tumor-induced immunosuppression mediated by programmed cell death protein 1 (PD-1) represents a critical checkpoint. PD-1/programmed death-ligand 1 (PD-L1) inhibitors have been proven to exhibit substantial efficacy in solid tumors such as melanoma and bladder cancer.

View Article and Find Full Text PDF

Electrically Conductive Hydrogels for Wound Healing.

Adv Wound Care (New Rochelle)

September 2025

Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.

Wound healing is a complex, tightly regulated process involving a range of enzymes, growth factors, and cytokines that coordinate cellular activities essential for tissue repair and wound closure. However, in cases of extensive or severe injury, the intrinsic repair mechanisms are often insufficient, underscoring the need for advanced therapeutic strategies to accelerate healing and minimize scar formation. Electrically conductive hydrogels (ECHs), combining the advantageous properties of hydrogels with the physiological and electrochemical characteristics of conductive materials, present a safer and more convenient alternative to traditional electrode-based electrical stimulation (ES) for treating chronic and nonhealing wounds.

View Article and Find Full Text PDF

Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for arbitrary color adjustments during the coloring process, current structural color surfaces lack flexibility in control, as their colors are difficult to reprocess or adjust once formed.

View Article and Find Full Text PDF

Presented herein is a protocol for the iron-catalyzed [4 + 1] cycloadditions of -Boc-imines with β-ketosulfoxonum ylides through a succession of nucleophilic additions and intramolecular annulation, giving access to functionalized oxazolidine-2-ones in generally good yields. In contrast to the renown Corey-Chaykovsky reaction via N attack to furnish aziridines, this method afforded oxazolidine-2-ones via an O-nucleophilic attack. Features of this strategy include readily accessible starting materials, sustainable catalyst, post-functionalizations of complex molecules, scalability, and exceptional control over diastereoselectivity.

View Article and Find Full Text PDF