98%
921
2 minutes
20
Recent advancements in single-image 3D generation have produced two main categories of methods: reconstruction-based and generative methods. Reconstruction-based methods are efficient but lack uncertainty handling, leading to blurry artifacts in unseen regions. Generative approaches that based on score distillation [47], [71] are slow due to scene-specific optimization. Other methods, like InstantMesh [76], use a two-stage process - generating multi-view images with a diffusion model and then reconstructing 3D - which is inefficient due to multiple denoising steps of the diffusion model. To overcome these limitations, we introduce GECO, a feed-forward method for fast and high-quality single-image-to-3D generation within one second on a single GPU. Our approach resolves uncertainty and inefficiency issues through a two-stage distillation process. In the first stage, we distill a multi-step diffusion model [56] into a one-step model using score distillation for single-image-to-multi-view synthesis. To mitigate the synthesis quality degradation caused by the one-step model, we introduce a second distillation stage to learn to predict high-quality 3D from imperfect multi-view generated images by performing distillation directly on 3D representations. Experiments demonstrate that GECO offers significant speed improvements and comparable reconstruction quality compared to prior two-stage methods. Code: https://cwchenwang.github.io/geco.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2025.3602405 | DOI Listing |
RSC Adv
September 2025
Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax B.P. 1171 3000 Sfax Tunisia
Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China.
Melasma is a facial hyperpigmentation disease that significantly impacts patients' quality of life. Clinical treatment is limited by the short half-lives and hydrophilicity of drugs, necessitating release curve optimization to maintain a stable therapeutic concentration for an extended period. This article utilizes natural biomaterials to design a core-shell structured microneedle, combining the "immediate release" and "delayed release" module to achieve programmed drug release.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Photo-responsive systems provide a powerful tool to reversibly regulate enzyme activity. However, inhibitor-based strategies, though widely used, are often restricted to specific enzymes. Noninhibitor strategies, such as enzyme surface modification or genetic mutation, often compromise structural integrity or residual activity.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Geological Survey, China University of Geosciences, Wuhan, 430074, China.
Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).
View Article and Find Full Text PDFExp Neurol
September 2025
CNRS UMR 5536 RMSB, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; CNRS UMR 7372 CEBC, La Rochelle University, Villiers-en-Bois, France.
Introduction: The vulnerability of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, including preclinical rodent models, lacking are comprehensive longitudinal studies spanning the mouse lifespan. We previously reported early WM modifications using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi.
View Article and Find Full Text PDF